svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
38.4 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from parameterized import parameterized
from diffusers import (
AsymmetricAutoencoderKL,
AutoencoderKL,
AutoencoderKLTemporalDecoder,
AutoencoderTiny,
ConsistencyDecoderVAE,
StableDiffusionPipeline,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.loading_utils import load_image
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
floats_tensor,
load_hf_numpy,
require_torch_accelerator,
require_torch_accelerator_with_fp16,
require_torch_accelerator_with_training,
require_torch_gpu,
skip_mps,
slow,
torch_all_close,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
block_out_channels = block_out_channels or [2, 4]
norm_num_groups = norm_num_groups or 2
init_dict = {
"block_out_channels": block_out_channels,
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
"up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
"latent_channels": 4,
"norm_num_groups": norm_num_groups,
}
return init_dict
def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
block_out_channels = block_out_channels or [2, 4]
norm_num_groups = norm_num_groups or 2
init_dict = {
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
"down_block_out_channels": block_out_channels,
"layers_per_down_block": 1,
"up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
"up_block_out_channels": block_out_channels,
"layers_per_up_block": 1,
"act_fn": "silu",
"latent_channels": 4,
"norm_num_groups": norm_num_groups,
"sample_size": 32,
"scaling_factor": 0.18215,
}
return init_dict
def get_autoencoder_tiny_config(block_out_channels=None):
block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
init_dict = {
"in_channels": 3,
"out_channels": 3,
"encoder_block_out_channels": block_out_channels,
"decoder_block_out_channels": block_out_channels,
"num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
"num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
}
return init_dict
def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
block_out_channels = block_out_channels or [2, 4]
norm_num_groups = norm_num_groups or 2
return {
"encoder_block_out_channels": block_out_channels,
"encoder_in_channels": 3,
"encoder_out_channels": 4,
"encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
"decoder_add_attention": False,
"decoder_block_out_channels": block_out_channels,
"decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels),
"decoder_downsample_padding": 1,
"decoder_in_channels": 7,
"decoder_layers_per_block": 1,
"decoder_norm_eps": 1e-05,
"decoder_norm_num_groups": norm_num_groups,
"encoder_norm_num_groups": norm_num_groups,
"decoder_num_train_timesteps": 1024,
"decoder_out_channels": 6,
"decoder_resnet_time_scale_shift": "scale_shift",
"decoder_time_embedding_type": "learned",
"decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels),
"scaling_factor": 1,
"latent_channels": 4,
}
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AutoencoderKL
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = get_autoencoder_kl_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
@require_torch_accelerator_with_training
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-5)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
def test_from_pretrained_hub(self):
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def test_output_pretrained(self):
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
model = model.to(torch_device)
model.eval()
# Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
if torch_device != "mps":
generator = torch.Generator(device=generator_device).manual_seed(0)
else:
generator = torch.manual_seed(0)
image = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
image = image.to(torch_device)
with torch.no_grad():
output = model(image, sample_posterior=True, generator=generator).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
expected_output_slice = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
]
)
elif generator_device == "cpu":
expected_output_slice = torch.tensor(
[
-0.1352,
0.0878,
0.0419,
-0.0818,
-0.1069,
0.0688,
-0.1458,
-0.4446,
-0.0026,
]
)
else:
expected_output_slice = torch.tensor(
[
-0.2421,
0.4642,
0.2507,
-0.0438,
0.0682,
0.3160,
-0.2018,
-0.0727,
0.2485,
]
)
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AsymmetricAutoencoderKL
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
mask = torch.ones((batch_size, 1) + sizes).to(torch_device)
return {"sample": image, "mask": mask}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = get_asym_autoencoder_kl_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_forward_with_norm_groups(self):
pass
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderTiny
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = get_autoencoder_tiny_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_outputs_equivalence(self):
pass
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase):
model_class = ConsistencyDecoderVAE
main_input_name = "sample"
base_precision = 1e-2
forward_requires_fresh_args = True
def inputs_dict(self, seed=None):
generator = torch.Generator("cpu")
if seed is not None:
generator.manual_seed(0)
image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device))
return {"sample": image, "generator": generator}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
@property
def init_dict(self):
return get_consistency_vae_config()
def prepare_init_args_and_inputs_for_common(self):
return self.init_dict, self.inputs_dict()
@unittest.skip
def test_training(self):
...
@unittest.skip
def test_ema_training(self):
...
class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase):
model_class = AutoencoderKLTemporalDecoder
main_input_name = "sample"
base_precision = 1e-2
@property
def dummy_input(self):
batch_size = 3
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
num_frames = 3
return {"sample": image, "num_frames": num_frames}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"latent_channels": 4,
"layers_per_block": 2,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_forward_signature(self):
pass
def test_training(self):
pass
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
assert not model.is_gradient_checkpointing and model.training
out = model(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
labels = torch.randn_like(out)
loss = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
model_2 = self.model_class(**init_dict)
# clone model
model_2.load_state_dict(model.state_dict())
model_2.to(torch_device)
model_2.enable_gradient_checkpointing()
assert model_2.is_gradient_checkpointing and model_2.training
out_2 = model_2(**inputs_dict).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_2.zero_grad()
loss_2 = (out_2 - labels).mean()
loss_2.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_2).abs() < 1e-5)
named_params = dict(model.named_parameters())
named_params_2 = dict(model_2.named_parameters())
for name, param in named_params.items():
if "post_quant_conv" in name:
continue
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
torch_dtype = torch.float16 if fp16 else torch.float32
model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
model.to(torch_device).eval()
return model
@parameterized.expand(
[
[(1, 4, 73, 97), (1, 3, 584, 776)],
[(1, 4, 97, 73), (1, 3, 776, 584)],
[(1, 4, 49, 65), (1, 3, 392, 520)],
[(1, 4, 65, 49), (1, 3, 520, 392)],
[(1, 4, 49, 49), (1, 3, 392, 392)],
]
)
def test_tae_tiling(self, in_shape, out_shape):
model = self.get_sd_vae_model()
model.enable_tiling()
with torch.no_grad():
zeros = torch.zeros(in_shape).to(torch_device)
dec = model.decode(zeros).sample
assert dec.shape == out_shape
def test_stable_diffusion(self):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed=33)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand([(True,), (False,)])
def test_tae_roundtrip(self, enable_tiling):
# load the autoencoder
model = self.get_sd_vae_model()
if enable_tiling:
model.enable_tiling()
# make a black image with a white square in the middle,
# which is large enough to split across multiple tiles
image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
image[..., 256:768, 256:768] = 1.0
# round-trip the image through the autoencoder
with torch.no_grad():
sample = model(image).sample
# the autoencoder reconstruction should match original image, sorta
def downscale(x):
return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)
assert torch_all_close(downscale(sample), downscale(image), atol=0.125)
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
revision = "fp16" if fp16 else None
torch_dtype = torch.float16 if fp16 else torch.float32
model = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
torch_dtype=torch_dtype,
revision=revision,
)
model.to(torch_device)
return model
def get_generator(self, seed=0):
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
if torch_device != "mps":
return torch.Generator(device=generator_device).manual_seed(seed)
return torch.manual_seed(seed)
@parameterized.expand(
[
# fmt: off
[
33,
[-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
[-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
],
[
47,
[-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
[0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
],
# fmt: on
]
)
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
]
)
@require_torch_accelerator_with_fp16
def test_stable_diffusion_fp16(self, seed, expected_slice):
model = self.get_sd_vae_model(fp16=True)
image = self.get_sd_image(seed, fp16=True)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[
33,
[-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
[-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
],
[
47,
[-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
[0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
],
# fmt: on
]
)
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
]
)
@require_torch_accelerator
@skip_mps
def test_stable_diffusion_decode(self, seed, expected_slice):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
]
)
@require_torch_accelerator_with_fp16
def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
model = self.get_sd_vae_model(fp16=True)
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand([(13,), (16,), (27,)])
@require_torch_gpu
@unittest.skipIf(
not is_xformers_available(),
reason="xformers is not required when using PyTorch 2.0.",
)
def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
model = self.get_sd_vae_model(fp16=True)
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
with torch.no_grad():
sample = model.decode(encoding).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
sample_2 = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
assert torch_all_close(sample, sample_2, atol=1e-1)
@parameterized.expand([(13,), (16,), (37,)])
@require_torch_gpu
@unittest.skipIf(
not is_xformers_available(),
reason="xformers is not required when using PyTorch 2.0.",
)
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
sample_2 = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
assert torch_all_close(sample, sample_2, atol=1e-2)
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
]
)
def test_stable_diffusion_encode_sample(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
dist = model.encode(image).latent_dist
sample = dist.sample(generator=generator)
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
tolerance = 3e-3 if torch_device != "mps" else 1e-2
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
revision = "main"
torch_dtype = torch.float32
model = AsymmetricAutoencoderKL.from_pretrained(
model_id,
torch_dtype=torch_dtype,
revision=revision,
)
model.to(torch_device).eval()
return model
def get_generator(self, seed=0):
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
if torch_device != "mps":
return torch.Generator(device=generator_device).manual_seed(seed)
return torch.manual_seed(seed)
@parameterized.expand(
[
# fmt: off
[
33,
[-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
[-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
],
[
47,
[0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529],
[-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
],
# fmt: on
]
)
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
sample = model(image, generator=generator, sample_posterior=True).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
@parameterized.expand(
[
# fmt: off
[
33,
[-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
[-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
],
[
47,
[0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
[0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
],
# fmt: on
]
)
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
with torch.no_grad():
sample = model(image).sample
assert sample.shape == image.shape
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
@parameterized.expand(
[
# fmt: off
[13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
[37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
# fmt: on
]
)
@require_torch_accelerator
@skip_mps
def test_stable_diffusion_decode(self, seed, expected_slice):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)
@parameterized.expand([(13,), (16,), (37,)])
@require_torch_gpu
@unittest.skipIf(
not is_xformers_available(),
reason="xformers is not required when using PyTorch 2.0.",
)
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
model = self.get_sd_vae_model()
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
with torch.no_grad():
sample = model.decode(encoding).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
sample_2 = model.decode(encoding).sample
assert list(sample.shape) == [3, 3, 512, 512]
assert torch_all_close(sample, sample_2, atol=5e-2)
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
]
)
def test_stable_diffusion_encode_sample(self, seed, expected_slice):
model = self.get_sd_vae_model()
image = self.get_sd_image(seed)
generator = self.get_generator(seed)
with torch.no_grad():
dist = model.encode(image).latent_dist
sample = dist.sample(generator=generator)
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
expected_output_slice = torch.tensor(expected_slice)
tolerance = 3e-3 if torch_device != "mps" else 1e-2
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
@slow
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@torch.no_grad()
def test_encode_decode(self):
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update
vae.to(torch_device)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
).resize((256, 256))
image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[
None, :, :, :
].cuda()
latent = vae.encode(image).latent_dist.mean
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample
actual_output = sample[0, :2, :2, :2].flatten().cpu()
expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024])
assert torch_all_close(actual_output, expected_output, atol=5e-3)
def test_sd(self):
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None)
pipe.to(torch_device)
out = pipe(
"horse",
num_inference_steps=2,
output_type="pt",
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
actual_output = out[:2, :2, :2].flatten().cpu()
expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759])
assert torch_all_close(actual_output, expected_output, atol=5e-3)
def test_encode_decode_f16(self):
vae = ConsistencyDecoderVAE.from_pretrained(
"openai/consistency-decoder", torch_dtype=torch.float16
) # TODO - update
vae.to(torch_device)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
).resize((256, 256))
image = (
torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :]
.half()
.cuda()
)
latent = vae.encode(image).latent_dist.mean
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample
actual_output = sample[0, :2, :2, :2].flatten().cpu()
expected_output = torch.tensor(
[-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471],
dtype=torch.float16,
)
assert torch_all_close(actual_output, expected_output, atol=5e-3)
def test_sd_f16(self):
vae = ConsistencyDecoderVAE.from_pretrained(
"openai/consistency-decoder", torch_dtype=torch.float16
) # TODO - update
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
vae=vae,
safety_checker=None,
)
pipe.to(torch_device)
out = pipe(
"horse",
num_inference_steps=2,
output_type="pt",
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
actual_output = out[:2, :2, :2].flatten().cpu()
expected_output = torch.tensor(
[0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035],
dtype=torch.float16,
)
assert torch_all_close(actual_output, expected_output, atol=5e-3)
def test_vae_tiling(self):
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out_1 = pipe(
"horse",
num_inference_steps=2,
output_type="pt",
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
# make sure tiled vae decode yields the same result
pipe.enable_vae_tiling()
out_2 = pipe(
"horse",
num_inference_steps=2,
output_type="pt",
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
assert torch_all_close(out_1, out_2, atol=5e-3)
# test that tiled decode works with various shapes
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
with torch.no_grad():
for shape in shapes:
image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype)
pipe.vae.decode(image)