|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import DiTTransformer2DModel, Transformer2DModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class DiTTransformer2DModelTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = DiTTransformer2DModel |
|
main_input_name = "hidden_states" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
in_channels = 4 |
|
sample_size = 8 |
|
scheduler_num_train_steps = 1000 |
|
num_class_labels = 4 |
|
|
|
hidden_states = floats_tensor((batch_size, in_channels, sample_size, sample_size)).to(torch_device) |
|
timesteps = torch.randint(0, scheduler_num_train_steps, size=(batch_size,)).to(torch_device) |
|
class_label_ids = torch.randint(0, num_class_labels, size=(batch_size,)).to(torch_device) |
|
|
|
return {"hidden_states": hidden_states, "timestep": timesteps, "class_labels": class_label_ids} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 8, 8) |
|
|
|
@property |
|
def output_shape(self): |
|
return (8, 8, 8) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"in_channels": 4, |
|
"out_channels": 8, |
|
"activation_fn": "gelu-approximate", |
|
"num_attention_heads": 2, |
|
"attention_head_dim": 4, |
|
"attention_bias": True, |
|
"num_layers": 1, |
|
"norm_type": "ada_norm_zero", |
|
"num_embeds_ada_norm": 8, |
|
"patch_size": 2, |
|
"sample_size": 8, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_output(self): |
|
super().test_output( |
|
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape |
|
) |
|
|
|
def test_correct_class_remapping_from_dict_config(self): |
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common() |
|
model = Transformer2DModel.from_config(init_dict) |
|
assert isinstance(model, DiTTransformer2DModel) |
|
|
|
def test_correct_class_remapping_from_pretrained_config(self): |
|
config = DiTTransformer2DModel.load_config("facebook/DiT-XL-2-256", subfolder="transformer") |
|
model = Transformer2DModel.from_config(config) |
|
assert isinstance(model, DiTTransformer2DModel) |
|
|
|
@slow |
|
def test_correct_class_remapping(self): |
|
model = Transformer2DModel.from_pretrained("facebook/DiT-XL-2-256", subfolder="transformer") |
|
assert isinstance(model, DiTTransformer2DModel) |
|
|