|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import SD3Transformer2DModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = SD3Transformer2DModel |
|
main_input_name = "hidden_states" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 2 |
|
num_channels = 4 |
|
height = width = embedding_dim = 32 |
|
pooled_embedding_dim = embedding_dim * 2 |
|
sequence_length = 154 |
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) |
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) |
|
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device) |
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) |
|
|
|
return { |
|
"hidden_states": hidden_states, |
|
"encoder_hidden_states": encoder_hidden_states, |
|
"pooled_projections": pooled_prompt_embeds, |
|
"timestep": timestep, |
|
} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"sample_size": 32, |
|
"patch_size": 1, |
|
"in_channels": 4, |
|
"num_layers": 1, |
|
"attention_head_dim": 8, |
|
"num_attention_heads": 4, |
|
"caption_projection_dim": 32, |
|
"joint_attention_dim": 32, |
|
"pooled_projection_dim": 64, |
|
"out_channels": 4, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|