|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import math |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import UNet2DModel |
|
from diffusers.utils import logging |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
require_torch_accelerator, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
enable_full_determinism() |
|
|
|
|
|
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet2DModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (4, 8), |
|
"norm_num_groups": 2, |
|
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"), |
|
"up_block_types": ("AttnUpBlock2D", "UpBlock2D"), |
|
"attention_head_dim": 3, |
|
"out_channels": 3, |
|
"in_channels": 3, |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_mid_block_attn_groups(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["add_attention"] = True |
|
init_dict["attn_norm_num_groups"] = 4 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
self.assertIsNotNone( |
|
model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not." |
|
) |
|
self.assertEqual( |
|
model.mid_block.attentions[0].group_norm.num_groups, |
|
init_dict["attn_norm_num_groups"], |
|
"Mid block Attention group norm does not have the expected number of groups.", |
|
) |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.to_tuple()[0] |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
|
|
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet2DModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 4 |
|
sizes = (32, 32) |
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"layers_per_block": 2, |
|
"block_out_channels": (32, 64), |
|
"attention_head_dim": 32, |
|
"down_block_types": ("DownBlock2D", "DownBlock2D"), |
|
"up_block_types": ("UpBlock2D", "UpBlock2D"), |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_from_pretrained_hub(self): |
|
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) |
|
|
|
self.assertIsNotNone(model) |
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
model.to(torch_device) |
|
image = model(**self.dummy_input).sample |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
@require_torch_accelerator |
|
def test_from_pretrained_accelerate(self): |
|
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) |
|
model.to(torch_device) |
|
image = model(**self.dummy_input).sample |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
@require_torch_accelerator |
|
def test_from_pretrained_accelerate_wont_change_results(self): |
|
|
|
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) |
|
model_accelerate.to(torch_device) |
|
model_accelerate.eval() |
|
|
|
noise = torch.randn( |
|
1, |
|
model_accelerate.config.in_channels, |
|
model_accelerate.config.sample_size, |
|
model_accelerate.config.sample_size, |
|
generator=torch.manual_seed(0), |
|
) |
|
noise = noise.to(torch_device) |
|
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) |
|
|
|
arr_accelerate = model_accelerate(noise, time_step)["sample"] |
|
|
|
|
|
del model_accelerate |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
model_normal_load, _ = UNet2DModel.from_pretrained( |
|
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False |
|
) |
|
model_normal_load.to(torch_device) |
|
model_normal_load.eval() |
|
arr_normal_load = model_normal_load(noise, time_step)["sample"] |
|
|
|
assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3) |
|
|
|
def test_output_pretrained(self): |
|
model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update") |
|
model.eval() |
|
model.to(torch_device) |
|
|
|
noise = torch.randn( |
|
1, |
|
model.config.in_channels, |
|
model.config.sample_size, |
|
model.config.sample_size, |
|
generator=torch.manual_seed(0), |
|
) |
|
noise = noise.to(torch_device) |
|
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) |
|
|
|
with torch.no_grad(): |
|
output = model(noise, time_step).sample |
|
|
|
output_slice = output[0, -1, -3:, -3:].flatten().cpu() |
|
|
|
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) |
|
|
|
|
|
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3)) |
|
|
|
|
|
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet2DModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self, sizes=(32, 32)): |
|
batch_size = 4 |
|
num_channels = 3 |
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": [32, 64, 64, 64], |
|
"in_channels": 3, |
|
"layers_per_block": 1, |
|
"out_channels": 3, |
|
"time_embedding_type": "fourier", |
|
"norm_eps": 1e-6, |
|
"mid_block_scale_factor": math.sqrt(2.0), |
|
"norm_num_groups": None, |
|
"down_block_types": [ |
|
"SkipDownBlock2D", |
|
"AttnSkipDownBlock2D", |
|
"SkipDownBlock2D", |
|
"SkipDownBlock2D", |
|
], |
|
"up_block_types": [ |
|
"SkipUpBlock2D", |
|
"SkipUpBlock2D", |
|
"AttnSkipUpBlock2D", |
|
"SkipUpBlock2D", |
|
], |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@slow |
|
def test_from_pretrained_hub(self): |
|
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
model.to(torch_device) |
|
inputs = self.dummy_input |
|
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device) |
|
inputs["sample"] = noise |
|
image = model(**inputs) |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
@slow |
|
def test_output_pretrained_ve_mid(self): |
|
model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") |
|
model.to(torch_device) |
|
|
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (256, 256) |
|
|
|
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) |
|
|
|
with torch.no_grad(): |
|
output = model(noise, time_step).sample |
|
|
|
output_slice = output[0, -3:, -3:, -1].flatten().cpu() |
|
|
|
expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056]) |
|
|
|
|
|
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) |
|
|
|
def test_output_pretrained_ve_large(self): |
|
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") |
|
model.to(torch_device) |
|
|
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) |
|
|
|
with torch.no_grad(): |
|
output = model(noise, time_step).sample |
|
|
|
output_slice = output[0, -3:, -3:, -1].flatten().cpu() |
|
|
|
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) |
|
|
|
|
|
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) |
|
|
|
def test_forward_with_norm_groups(self): |
|
|
|
pass |
|
|