|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.models import ModelMixin, UNet3DConditionModel |
|
from diffusers.utils import logging |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@skip_mps |
|
class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet3DConditionModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 4 |
|
num_frames = 4 |
|
sizes = (16, 16) |
|
|
|
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 4, 16, 16) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 4, 16, 16) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (4, 8), |
|
"norm_num_groups": 4, |
|
"down_block_types": ( |
|
"CrossAttnDownBlock3D", |
|
"DownBlock3D", |
|
), |
|
"up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"), |
|
"cross_attention_dim": 8, |
|
"attention_head_dim": 2, |
|
"out_channels": 4, |
|
"in_channels": 4, |
|
"layers_per_block": 1, |
|
"sample_size": 16, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_enable_works(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
assert ( |
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ |
|
== "XFormersAttnProcessor" |
|
), "xformers is not enabled" |
|
|
|
|
|
def test_forward_with_norm_groups(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
init_dict["block_out_channels"] = (32, 64) |
|
init_dict["norm_num_groups"] = 32 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
|
|
def test_determinism(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
|
|
if torch_device == "mps" and isinstance(model, ModelMixin): |
|
model(**self.dummy_input) |
|
|
|
first = model(**inputs_dict) |
|
if isinstance(first, dict): |
|
first = first.sample |
|
|
|
second = model(**inputs_dict) |
|
if isinstance(second, dict): |
|
second = second.sample |
|
|
|
out_1 = first.cpu().numpy() |
|
out_2 = second.cpu().numpy() |
|
out_1 = out_1[~np.isnan(out_1)] |
|
out_2 = out_2[~np.isnan(out_2)] |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
def test_model_attention_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = 8 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
model.set_attention_slice("auto") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice("max") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice(2) |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
def test_feed_forward_chunking(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
init_dict["block_out_channels"] = (32, 64) |
|
init_dict["norm_num_groups"] = 32 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict)[0] |
|
|
|
model.enable_forward_chunking() |
|
with torch.no_grad(): |
|
output_2 = model(**inputs_dict)[0] |
|
|
|
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") |
|
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 |
|
|