|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import UNetSpatioTemporalConditionModel |
|
from diffusers.utils import logging |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
skip_mps, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class UNetSpatioTemporalConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNetSpatioTemporalConditionModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 2 |
|
num_frames = 2 |
|
num_channels = 4 |
|
sizes = (32, 32) |
|
|
|
noise = floats_tensor((batch_size, num_frames, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
encoder_hidden_states = floats_tensor((batch_size, 1, 32)).to(torch_device) |
|
|
|
return { |
|
"sample": noise, |
|
"timestep": time_step, |
|
"encoder_hidden_states": encoder_hidden_states, |
|
"added_time_ids": self._get_add_time_ids(), |
|
} |
|
|
|
@property |
|
def input_shape(self): |
|
return (2, 2, 4, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 32, 32) |
|
|
|
@property |
|
def fps(self): |
|
return 6 |
|
|
|
@property |
|
def motion_bucket_id(self): |
|
return 127 |
|
|
|
@property |
|
def noise_aug_strength(self): |
|
return 0.02 |
|
|
|
@property |
|
def addition_time_embed_dim(self): |
|
return 32 |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (32, 64), |
|
"down_block_types": ( |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"DownBlockSpatioTemporal", |
|
), |
|
"up_block_types": ( |
|
"UpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
), |
|
"cross_attention_dim": 32, |
|
"num_attention_heads": 8, |
|
"out_channels": 4, |
|
"in_channels": 4, |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"projection_class_embeddings_input_dim": self.addition_time_embed_dim * 3, |
|
"addition_time_embed_dim": self.addition_time_embed_dim, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def _get_add_time_ids(self, do_classifier_free_guidance=True): |
|
add_time_ids = [self.fps, self.motion_bucket_id, self.noise_aug_strength] |
|
|
|
passed_add_embed_dim = self.addition_time_embed_dim * len(add_time_ids) |
|
expected_add_embed_dim = self.addition_time_embed_dim * 3 |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], device=torch_device) |
|
add_time_ids = add_time_ids.repeat(1, 1) |
|
if do_classifier_free_guidance: |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids]) |
|
|
|
return add_time_ids |
|
|
|
@unittest.skip("Number of Norm Groups is not configurable") |
|
def test_forward_with_norm_groups(self): |
|
pass |
|
|
|
@unittest.skip("Deprecated functionality") |
|
def test_model_attention_slicing(self): |
|
pass |
|
|
|
@unittest.skip("Not supported") |
|
def test_model_with_use_linear_projection(self): |
|
pass |
|
|
|
@unittest.skip("Not supported") |
|
def test_model_with_simple_projection(self): |
|
pass |
|
|
|
@unittest.skip("Not supported") |
|
def test_model_with_class_embeddings_concat(self): |
|
pass |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_enable_works(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
assert ( |
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ |
|
== "XFormersAttnProcessor" |
|
), "xformers is not enabled" |
|
|
|
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") |
|
def test_gradient_checkpointing(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-5) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
for name, param in named_params.items(): |
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) |
|
|
|
def test_model_with_num_attention_heads_tuple(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["num_attention_heads"] = (8, 16) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_cross_attention_dim_tuple(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["cross_attention_dim"] = (32, 32) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_gradient_checkpointing_is_applied(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["num_attention_heads"] = (8, 16) |
|
|
|
model_class_copy = copy.copy(self.model_class) |
|
|
|
modules_with_gc_enabled = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_gradient_checkpointing_new(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
modules_with_gc_enabled[module.__class__.__name__] = True |
|
|
|
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new |
|
|
|
model = model_class_copy(**init_dict) |
|
model.enable_gradient_checkpointing() |
|
|
|
EXPECTED_SET = { |
|
"TransformerSpatioTemporalModel", |
|
"CrossAttnDownBlockSpatioTemporal", |
|
"DownBlockSpatioTemporal", |
|
"UpBlockSpatioTemporal", |
|
"CrossAttnUpBlockSpatioTemporal", |
|
"UNetMidBlockSpatioTemporal", |
|
} |
|
|
|
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET |
|
assert all(modules_with_gc_enabled.values()), "All modules should be enabled" |
|
|
|
def test_pickle(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["num_attention_heads"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
sample_copy = copy.copy(sample) |
|
|
|
assert (sample - sample_copy).abs().max() < 1e-4 |
|
|