|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import itertools |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
import warnings |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import safetensors |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from huggingface_hub import HfApi, create_repo |
|
from huggingface_hub.utils import insecure_hashlib |
|
from packaging import version |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.loaders import AttnProcsLayers |
|
from diffusers.models.attention_processor import ( |
|
CustomDiffusionAttnProcessor, |
|
CustomDiffusionAttnProcessor2_0, |
|
CustomDiffusionXFormersAttnProcessor, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def freeze_params(params): |
|
for param in params: |
|
param.requires_grad = False |
|
|
|
|
|
def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None): |
|
img_str = "" |
|
for i, image in enumerate(images): |
|
image.save(os.path.join(repo_folder, f"image_{i}.png")) |
|
img_str += f"![img_{i}](./image_{i}.png)\n" |
|
|
|
model_description = f""" |
|
# Custom Diffusion - {repo_id} |
|
|
|
These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n |
|
{img_str} |
|
|
|
\nFor more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion). |
|
""" |
|
model_card = load_or_create_model_card( |
|
repo_id_or_path=repo_id, |
|
from_training=True, |
|
license="creativeml-openrail-m", |
|
base_model=base_model, |
|
prompt=prompt, |
|
model_description=model_description, |
|
inference=True, |
|
) |
|
|
|
tags = [ |
|
"text-to-image", |
|
"diffusers", |
|
"stable-diffusion", |
|
"stable-diffusion-diffusers", |
|
"custom-diffusion", |
|
"diffusers-training", |
|
] |
|
model_card = populate_model_card(model_card, tags=tags) |
|
|
|
model_card.save(os.path.join(repo_folder, "README.md")) |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=revision, |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation |
|
|
|
return RobertaSeriesModelWithTransformation |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def collate_fn(examples, with_prior_preservation): |
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
mask = [example["mask"] for example in examples] |
|
|
|
|
|
if with_prior_preservation: |
|
input_ids += [example["class_prompt_ids"] for example in examples] |
|
pixel_values += [example["class_images"] for example in examples] |
|
mask += [example["class_mask"] for example in examples] |
|
|
|
input_ids = torch.cat(input_ids, dim=0) |
|
pixel_values = torch.stack(pixel_values) |
|
mask = torch.stack(mask) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
mask = mask.to(memory_format=torch.contiguous_format).float() |
|
|
|
batch = {"input_ids": input_ids, "pixel_values": pixel_values, "mask": mask.unsqueeze(1)} |
|
return batch |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
class CustomDiffusionDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
concepts_list, |
|
tokenizer, |
|
size=512, |
|
mask_size=64, |
|
center_crop=False, |
|
with_prior_preservation=False, |
|
num_class_images=200, |
|
hflip=False, |
|
aug=True, |
|
): |
|
self.size = size |
|
self.mask_size = mask_size |
|
self.center_crop = center_crop |
|
self.tokenizer = tokenizer |
|
self.interpolation = Image.BILINEAR |
|
self.aug = aug |
|
|
|
self.instance_images_path = [] |
|
self.class_images_path = [] |
|
self.with_prior_preservation = with_prior_preservation |
|
for concept in concepts_list: |
|
inst_img_path = [ |
|
(x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file() |
|
] |
|
self.instance_images_path.extend(inst_img_path) |
|
|
|
if with_prior_preservation: |
|
class_data_root = Path(concept["class_data_dir"]) |
|
if os.path.isdir(class_data_root): |
|
class_images_path = list(class_data_root.iterdir()) |
|
class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))] |
|
else: |
|
with open(class_data_root, "r") as f: |
|
class_images_path = f.read().splitlines() |
|
with open(concept["class_prompt"], "r") as f: |
|
class_prompt = f.read().splitlines() |
|
|
|
class_img_path = list(zip(class_images_path, class_prompt)) |
|
self.class_images_path.extend(class_img_path[:num_class_images]) |
|
|
|
random.shuffle(self.instance_images_path) |
|
self.num_instance_images = len(self.instance_images_path) |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
self.flip = transforms.RandomHorizontalFlip(0.5 * hflip) |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
self.flip, |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def preprocess(self, image, scale, resample): |
|
outer, inner = self.size, scale |
|
factor = self.size // self.mask_size |
|
if scale > self.size: |
|
outer, inner = scale, self.size |
|
top, left = np.random.randint(0, outer - inner + 1), np.random.randint(0, outer - inner + 1) |
|
image = image.resize((scale, scale), resample=resample) |
|
image = np.array(image).astype(np.uint8) |
|
image = (image / 127.5 - 1.0).astype(np.float32) |
|
instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32) |
|
mask = np.zeros((self.size // factor, self.size // factor)) |
|
if scale > self.size: |
|
instance_image = image[top : top + inner, left : left + inner, :] |
|
mask = np.ones((self.size // factor, self.size // factor)) |
|
else: |
|
instance_image[top : top + inner, left : left + inner, :] = image |
|
mask[ |
|
top // factor + 1 : (top + scale) // factor - 1, left // factor + 1 : (left + scale) // factor - 1 |
|
] = 1.0 |
|
return instance_image, mask |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image, instance_prompt = self.instance_images_path[index % self.num_instance_images] |
|
instance_image = Image.open(instance_image) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
instance_image = self.flip(instance_image) |
|
|
|
|
|
random_scale = self.size |
|
if self.aug: |
|
random_scale = ( |
|
np.random.randint(self.size // 3, self.size + 1) |
|
if np.random.uniform() < 0.66 |
|
else np.random.randint(int(1.2 * self.size), int(1.4 * self.size)) |
|
) |
|
instance_image, mask = self.preprocess(instance_image, random_scale, self.interpolation) |
|
|
|
if random_scale < 0.6 * self.size: |
|
instance_prompt = np.random.choice(["a far away ", "very small "]) + instance_prompt |
|
elif random_scale > self.size: |
|
instance_prompt = np.random.choice(["zoomed in ", "close up "]) + instance_prompt |
|
|
|
example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1) |
|
example["mask"] = torch.from_numpy(mask) |
|
example["instance_prompt_ids"] = self.tokenizer( |
|
instance_prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
if self.with_prior_preservation: |
|
class_image, class_prompt = self.class_images_path[index % self.num_class_images] |
|
class_image = Image.open(class_image) |
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_mask"] = torch.ones_like(example["mask"]) |
|
example["class_prompt_ids"] = self.tokenizer( |
|
class_prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_dir, safe_serialization=True): |
|
"""Saves the new token embeddings from the text encoder.""" |
|
logger.info("Saving embeddings") |
|
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight |
|
for x, y in zip(modifier_token_id, args.modifier_token): |
|
learned_embeds_dict = {} |
|
learned_embeds_dict[y] = learned_embeds[x] |
|
filename = f"{output_dir}/{y}.bin" |
|
|
|
if safe_serialization: |
|
safetensors.torch.save_file(learned_embeds_dict, filename, metadata={"format": "pt"}) |
|
else: |
|
torch.save(learned_embeds_dict, filename) |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Custom Diffusion training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=2, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=50, |
|
help=( |
|
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument( |
|
"--real_prior", |
|
default=False, |
|
action="store_true", |
|
help="real images as prior.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=200, |
|
help=( |
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="custom-diffusion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=250, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=2, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument( |
|
"--freeze_model", |
|
type=str, |
|
default="crossattn_kv", |
|
choices=["crossattn_kv", "crossattn"], |
|
help="crossattn to enable fine-tuning of all params in the cross attention", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prior_generation_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp32", "fp16", "bf16"], |
|
help=( |
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." |
|
), |
|
) |
|
parser.add_argument( |
|
"--concepts_list", |
|
type=str, |
|
default=None, |
|
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--set_grads_to_none", |
|
action="store_true", |
|
help=( |
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
), |
|
) |
|
parser.add_argument( |
|
"--modifier_token", |
|
type=str, |
|
default=None, |
|
help="A token to use as a modifier for the concept.", |
|
) |
|
parser.add_argument( |
|
"--initializer_token", type=str, default="ktn+pll+ucd", help="A token to use as initializer word." |
|
) |
|
parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.") |
|
parser.add_argument( |
|
"--noaug", |
|
action="store_true", |
|
help="Dont apply augmentation during data augmentation when this flag is enabled.", |
|
) |
|
parser.add_argument( |
|
"--no_safe_serialization", |
|
action="store_true", |
|
help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.", |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.with_prior_preservation: |
|
if args.concepts_list is None: |
|
if args.class_data_dir is None: |
|
raise ValueError("You must specify a data directory for class images.") |
|
if args.class_prompt is None: |
|
raise ValueError("You must specify prompt for class images.") |
|
else: |
|
|
|
if args.class_data_dir is not None: |
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") |
|
if args.class_prompt is not None: |
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") |
|
|
|
return args |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
import wandb |
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("custom-diffusion", config=vars(args)) |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
if args.concepts_list is None: |
|
args.concepts_list = [ |
|
{ |
|
"instance_prompt": args.instance_prompt, |
|
"class_prompt": args.class_prompt, |
|
"instance_data_dir": args.instance_data_dir, |
|
"class_data_dir": args.class_data_dir, |
|
} |
|
] |
|
else: |
|
with open(args.concepts_list, "r") as f: |
|
args.concepts_list = json.load(f) |
|
|
|
|
|
if args.with_prior_preservation: |
|
for i, concept in enumerate(args.concepts_list): |
|
class_images_dir = Path(concept["class_data_dir"]) |
|
if not class_images_dir.exists(): |
|
class_images_dir.mkdir(parents=True, exist_ok=True) |
|
if args.real_prior: |
|
assert ( |
|
class_images_dir / "images" |
|
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" |
|
assert ( |
|
len(list((class_images_dir / "images").iterdir())) == args.num_class_images |
|
), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" |
|
assert ( |
|
class_images_dir / "caption.txt" |
|
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" |
|
assert ( |
|
class_images_dir / "images.txt" |
|
).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" |
|
concept["class_prompt"] = os.path.join(class_images_dir, "caption.txt") |
|
concept["class_data_dir"] = os.path.join(class_images_dir, "images.txt") |
|
args.concepts_list[i] = concept |
|
accelerator.wait_for_everyone() |
|
else: |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 |
|
if args.prior_generation_precision == "fp32": |
|
torch_dtype = torch.float32 |
|
elif args.prior_generation_precision == "fp16": |
|
torch_dtype = torch.float16 |
|
elif args.prior_generation_precision == "bf16": |
|
torch_dtype = torch.bfloat16 |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
torch_dtype=torch_dtype, |
|
safety_checker=None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(concept["class_prompt"], num_new_images) |
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) |
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader) |
|
pipeline.to(accelerator.device) |
|
|
|
for example in tqdm( |
|
sample_dataloader, |
|
desc="Generating class images", |
|
disable=not accelerator.is_local_main_process, |
|
): |
|
images = pipeline(example["prompt"]).images |
|
|
|
for i, image in enumerate(images): |
|
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() |
|
image_filename = ( |
|
class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
) |
|
image.save(image_filename) |
|
|
|
del pipeline |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.tokenizer_name, |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder = text_encoder_cls.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
|
|
|
|
|
|
modifier_token_id = [] |
|
initializer_token_id = [] |
|
if args.modifier_token is not None: |
|
args.modifier_token = args.modifier_token.split("+") |
|
args.initializer_token = args.initializer_token.split("+") |
|
if len(args.modifier_token) > len(args.initializer_token): |
|
raise ValueError("You must specify + separated initializer token for each modifier token.") |
|
for modifier_token, initializer_token in zip( |
|
args.modifier_token, args.initializer_token[: len(args.modifier_token)] |
|
): |
|
|
|
num_added_tokens = tokenizer.add_tokens(modifier_token) |
|
if num_added_tokens == 0: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {modifier_token}. Please pass a different" |
|
" `modifier_token` that is not already in the tokenizer." |
|
) |
|
|
|
|
|
token_ids = tokenizer.encode([initializer_token], add_special_tokens=False) |
|
print(token_ids) |
|
|
|
if len(token_ids) > 1: |
|
raise ValueError("The initializer token must be a single token.") |
|
|
|
initializer_token_id.append(token_ids[0]) |
|
modifier_token_id.append(tokenizer.convert_tokens_to_ids(modifier_token)) |
|
|
|
|
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data |
|
for x, y in zip(modifier_token_id, initializer_token_id): |
|
token_embeds[x] = token_embeds[y] |
|
|
|
|
|
params_to_freeze = itertools.chain( |
|
text_encoder.text_model.encoder.parameters(), |
|
text_encoder.text_model.final_layer_norm.parameters(), |
|
text_encoder.text_model.embeddings.position_embedding.parameters(), |
|
) |
|
freeze_params(params_to_freeze) |
|
|
|
|
|
|
|
vae.requires_grad_(False) |
|
if args.modifier_token is None: |
|
text_encoder.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
if accelerator.mixed_precision != "fp16" and args.modifier_token is not None: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
attention_class = ( |
|
CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor |
|
) |
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
attention_class = CustomDiffusionXFormersAttnProcessor |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_kv = True |
|
train_q_out = False if args.freeze_model == "crossattn_kv" else True |
|
custom_diffusion_attn_procs = {} |
|
|
|
st = unet.state_dict() |
|
for name, _ in unet.attn_processors.items(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
layer_name = name.split(".processor")[0] |
|
weights = { |
|
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], |
|
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], |
|
} |
|
if train_q_out: |
|
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] |
|
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] |
|
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] |
|
if cross_attention_dim is not None: |
|
custom_diffusion_attn_procs[name] = attention_class( |
|
train_kv=train_kv, |
|
train_q_out=train_q_out, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
).to(unet.device) |
|
custom_diffusion_attn_procs[name].load_state_dict(weights) |
|
else: |
|
custom_diffusion_attn_procs[name] = attention_class( |
|
train_kv=False, |
|
train_q_out=False, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
del st |
|
unet.set_attn_processor(custom_diffusion_attn_procs) |
|
custom_diffusion_layers = AttnProcsLayers(unet.attn_processors) |
|
|
|
accelerator.register_for_checkpointing(custom_diffusion_layers) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
if args.modifier_token is not None: |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
if args.with_prior_preservation: |
|
args.learning_rate = args.learning_rate * 2.0 |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
optimizer = optimizer_class( |
|
itertools.chain(text_encoder.get_input_embeddings().parameters(), custom_diffusion_layers.parameters()) |
|
if args.modifier_token is not None |
|
else custom_diffusion_layers.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = CustomDiffusionDataset( |
|
concepts_list=args.concepts_list, |
|
tokenizer=tokenizer, |
|
with_prior_preservation=args.with_prior_preservation, |
|
size=args.resolution, |
|
mask_size=vae.encode( |
|
torch.randn(1, 3, args.resolution, args.resolution).to(dtype=weight_dtype).to(accelerator.device) |
|
) |
|
.latent_dist.sample() |
|
.size()[-1], |
|
center_crop=args.center_crop, |
|
num_class_images=args.num_class_images, |
|
hflip=args.hflip, |
|
aug=not args.noaug, |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
) |
|
|
|
|
|
if args.modifier_token is not None: |
|
custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler |
|
) |
|
else: |
|
custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
unet.train() |
|
if args.modifier_token is not None: |
|
text_encoder.train() |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet), accelerator.accumulate(text_encoder): |
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.with_prior_preservation: |
|
|
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) |
|
target, target_prior = torch.chunk(target, 2, dim=0) |
|
mask = torch.chunk(batch["mask"], 2, dim=0)[0] |
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() |
|
|
|
|
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") |
|
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
else: |
|
mask = batch["mask"] |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() |
|
accelerator.backward(loss) |
|
|
|
|
|
if args.modifier_token is not None: |
|
if accelerator.num_processes > 1: |
|
grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad |
|
else: |
|
grads_text_encoder = text_encoder.get_input_embeddings().weight.grad |
|
|
|
index_grads_to_zero = torch.arange(len(tokenizer)) != modifier_token_id[0] |
|
for i in range(1, len(modifier_token_id)): |
|
index_grads_to_zero = index_grads_to_zero & ( |
|
torch.arange(len(tokenizer)) != modifier_token_id[i] |
|
) |
|
grads_text_encoder.data[index_grads_to_zero, :] = grads_text_encoder.data[ |
|
index_grads_to_zero, : |
|
].fill_(0) |
|
|
|
if accelerator.sync_gradients: |
|
params_to_clip = ( |
|
itertools.chain(text_encoder.parameters(), custom_diffusion_layers.parameters()) |
|
if args.modifier_token is not None |
|
else custom_diffusion_layers.parameters() |
|
) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
if accelerator.is_main_process: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
images = [] |
|
|
|
if args.validation_prompt is not None and global_step % args.validation_steps == 0: |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=accelerator.unwrap_model(unet), |
|
text_encoder=accelerator.unwrap_model(text_encoder), |
|
tokenizer=tokenizer, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
images = [ |
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[ |
|
0 |
|
] |
|
for _ in range(args.num_validation_images) |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"validation": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = unet.to(torch.float32) |
|
unet.save_attn_procs(args.output_dir, safe_serialization=not args.no_safe_serialization) |
|
save_new_embed( |
|
text_encoder, |
|
modifier_token_id, |
|
accelerator, |
|
args, |
|
args.output_dir, |
|
safe_serialization=not args.no_safe_serialization, |
|
) |
|
|
|
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype |
|
) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline = pipeline.to(accelerator.device) |
|
|
|
|
|
weight_name = ( |
|
"pytorch_custom_diffusion_weights.safetensors" |
|
if not args.no_safe_serialization |
|
else "pytorch_custom_diffusion_weights.bin" |
|
) |
|
pipeline.unet.load_attn_procs(args.output_dir, weight_name=weight_name) |
|
for token in args.modifier_token: |
|
token_weight_name = f"{token}.safetensors" if not args.no_safe_serialization else f"{token}.bin" |
|
pipeline.load_textual_inversion(args.output_dir, weight_name=token_weight_name) |
|
|
|
|
|
if args.validation_prompt and args.num_validation_images > 0: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
images = [ |
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"test": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
images=images, |
|
base_model=args.pretrained_model_name_or_path, |
|
prompt=args.instance_prompt, |
|
repo_folder=args.output_dir, |
|
) |
|
api = HfApi(token=args.hub_token) |
|
api.upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|