|
import argparse |
|
import inspect |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
from datetime import timedelta |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import datasets |
|
import torch |
|
import torch.nn.functional as F |
|
from accelerate import Accelerator, InitProcessGroupKwargs |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration |
|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
|
|
import diffusers |
|
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
if not isinstance(arr, torch.Tensor): |
|
arr = torch.from_numpy(arr) |
|
res = arr[timesteps].float().to(timesteps.device) |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res.expand(broadcast_shape) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that HF Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--model_config_name_or_path", |
|
type=str, |
|
default=None, |
|
help="The config of the UNet model to train, leave as None to use standard DDPM configuration.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="ddpm-model-64", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--overwrite_output_dir", action="store_true") |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=64, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
default=False, |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" |
|
" process." |
|
), |
|
) |
|
parser.add_argument("--num_epochs", type=int, default=100) |
|
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") |
|
parser.add_argument( |
|
"--save_model_epochs", type=int, default=10, help="How often to save the model during training." |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="cosine", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument( |
|
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." |
|
) |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") |
|
parser.add_argument( |
|
"--use_ema", |
|
action="store_true", |
|
help="Whether to use Exponential Moving Average for the final model weights.", |
|
) |
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") |
|
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") |
|
parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository." |
|
) |
|
parser.add_argument( |
|
"--logger", |
|
type=str, |
|
default="tensorboard", |
|
choices=["tensorboard", "wandb"], |
|
help=( |
|
"Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)" |
|
" for experiment tracking and logging of model metrics and model checkpoints" |
|
), |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prediction_type", |
|
type=str, |
|
default="epsilon", |
|
choices=["epsilon", "sample"], |
|
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", |
|
) |
|
parser.add_argument("--ddpm_num_steps", type=int, default=1000) |
|
parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000) |
|
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("You must specify either a dataset name from the hub or a train data directory.") |
|
|
|
return args |
|
|
|
|
|
def main(args): |
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.logger, |
|
project_config=accelerator_project_config, |
|
kwargs_handlers=[kwargs], |
|
) |
|
|
|
if args.logger == "tensorboard": |
|
if not is_tensorboard_available(): |
|
raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.") |
|
|
|
elif args.logger == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
import wandb |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
if args.use_ema: |
|
ema_model.save_pretrained(os.path.join(output_dir, "unet_ema")) |
|
|
|
for i, model in enumerate(models): |
|
model.save_pretrained(os.path.join(output_dir, "unet")) |
|
|
|
|
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
if args.use_ema: |
|
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel) |
|
ema_model.load_state_dict(load_model.state_dict()) |
|
ema_model.to(accelerator.device) |
|
del load_model |
|
|
|
for i in range(len(models)): |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
if args.model_config_name_or_path is None: |
|
model = UNet2DModel( |
|
sample_size=args.resolution, |
|
in_channels=3, |
|
out_channels=3, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128, 256, 256, 512, 512), |
|
down_block_types=( |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"DownBlock2D", |
|
"AttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
up_block_types=( |
|
"UpBlock2D", |
|
"AttnUpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
"UpBlock2D", |
|
), |
|
) |
|
else: |
|
config = UNet2DModel.load_config(args.model_config_name_or_path) |
|
model = UNet2DModel.from_config(config) |
|
|
|
|
|
if args.use_ema: |
|
ema_model = EMAModel( |
|
model.parameters(), |
|
decay=args.ema_max_decay, |
|
use_ema_warmup=True, |
|
inv_gamma=args.ema_inv_gamma, |
|
power=args.ema_power, |
|
model_cls=UNet2DModel, |
|
model_config=model.config, |
|
) |
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
args.mixed_precision = accelerator.mixed_precision |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
args.mixed_precision = accelerator.mixed_precision |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
model.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) |
|
if accepts_prediction_type: |
|
noise_scheduler = DDPMScheduler( |
|
num_train_timesteps=args.ddpm_num_steps, |
|
beta_schedule=args.ddpm_beta_schedule, |
|
prediction_type=args.prediction_type, |
|
) |
|
else: |
|
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) |
|
|
|
|
|
optimizer = torch.optim.AdamW( |
|
model.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None: |
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
split="train", |
|
) |
|
else: |
|
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") |
|
|
|
|
|
|
|
|
|
augmentations = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), |
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def transform_images(examples): |
|
images = [augmentations(image.convert("RGB")) for image in examples["image"]] |
|
return {"input": images} |
|
|
|
logger.info(f"Dataset size: {len(dataset)}") |
|
|
|
dataset.set_transform(transform_images) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers |
|
) |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=(len(train_dataloader) * args.num_epochs), |
|
) |
|
|
|
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
if args.use_ema: |
|
ema_model.to(accelerator.device) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
run = os.path.split(__file__)[-1].split(".")[0] |
|
accelerator.init_trackers(run) |
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
max_train_steps = args.num_epochs * num_update_steps_per_epoch |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(dataset)}") |
|
logger.info(f" Num Epochs = {args.num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {max_train_steps}") |
|
|
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) |
|
|
|
|
|
for epoch in range(first_epoch, args.num_epochs): |
|
model.train() |
|
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description(f"Epoch {epoch}") |
|
for step, batch in enumerate(train_dataloader): |
|
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: |
|
if step % args.gradient_accumulation_steps == 0: |
|
progress_bar.update(1) |
|
continue |
|
|
|
clean_images = batch["input"].to(weight_dtype) |
|
|
|
noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device) |
|
bsz = clean_images.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device |
|
).long() |
|
|
|
|
|
|
|
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) |
|
|
|
with accelerator.accumulate(model): |
|
|
|
model_output = model(noisy_images, timesteps).sample |
|
|
|
if args.prediction_type == "epsilon": |
|
loss = F.mse_loss(model_output.float(), noise.float()) |
|
elif args.prediction_type == "sample": |
|
alpha_t = _extract_into_tensor( |
|
noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) |
|
) |
|
snr_weights = alpha_t / (1 - alpha_t) |
|
|
|
loss = snr_weights * F.mse_loss(model_output.float(), clean_images.float(), reduction="none") |
|
loss = loss.mean() |
|
else: |
|
raise ValueError(f"Unsupported prediction type: {args.prediction_type}") |
|
|
|
accelerator.backward(loss) |
|
|
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(model.parameters(), 1.0) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
if args.use_ema: |
|
ema_model.step(model.parameters()) |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} |
|
if args.use_ema: |
|
logs["ema_decay"] = ema_model.cur_decay_value |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
progress_bar.close() |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: |
|
unet = accelerator.unwrap_model(model) |
|
|
|
if args.use_ema: |
|
ema_model.store(unet.parameters()) |
|
ema_model.copy_to(unet.parameters()) |
|
|
|
pipeline = DDPMPipeline( |
|
unet=unet, |
|
scheduler=noise_scheduler, |
|
) |
|
|
|
generator = torch.Generator(device=pipeline.device).manual_seed(0) |
|
|
|
images = pipeline( |
|
generator=generator, |
|
batch_size=args.eval_batch_size, |
|
num_inference_steps=args.ddpm_num_inference_steps, |
|
output_type="np", |
|
).images |
|
|
|
if args.use_ema: |
|
ema_model.restore(unet.parameters()) |
|
|
|
|
|
images_processed = (images * 255).round().astype("uint8") |
|
|
|
if args.logger == "tensorboard": |
|
if is_accelerate_version(">=", "0.17.0.dev0"): |
|
tracker = accelerator.get_tracker("tensorboard", unwrap=True) |
|
else: |
|
tracker = accelerator.get_tracker("tensorboard") |
|
tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) |
|
elif args.logger == "wandb": |
|
|
|
accelerator.get_tracker("wandb").log( |
|
{"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, |
|
step=global_step, |
|
) |
|
|
|
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: |
|
|
|
unet = accelerator.unwrap_model(model) |
|
|
|
if args.use_ema: |
|
ema_model.store(unet.parameters()) |
|
ema_model.copy_to(unet.parameters()) |
|
|
|
pipeline = DDPMPipeline( |
|
unet=unet, |
|
scheduler=noise_scheduler, |
|
) |
|
|
|
pipeline.save_pretrained(args.output_dir) |
|
|
|
if args.use_ema: |
|
ema_model.restore(unet.parameters()) |
|
|
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message=f"Epoch {epoch}", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|