|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_numpy, |
|
nightly, |
|
require_torch_gpu, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = LDMTextToImagePipeline |
|
params = TEXT_TO_IMAGE_PARAMS - { |
|
"negative_prompt", |
|
"negative_prompt_embeds", |
|
"cross_attention_kwargs", |
|
"prompt_embeds", |
|
} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - { |
|
"num_images_per_prompt", |
|
"callback", |
|
"callback_steps", |
|
} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=(32, 64), |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), |
|
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vqvae": vae, |
|
"bert": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_inference_text2img(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = LDMTextToImagePipeline(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 16, 16, 3) |
|
expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class LDMTextToImagePipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, dtype=torch.float32, seed=0): |
|
generator = torch.manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_ldm_default_ddim(self): |
|
pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878]) |
|
max_diff = np.abs(expected_slice - image_slice).max() |
|
assert max_diff < 1e-3 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class LDMTextToImagePipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, dtype=torch.float32, seed=0): |
|
generator = torch.manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_ldm_default_ddim(self): |
|
pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|