diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_adapter
/test_stable_diffusion_adapter.py
# coding=utf-8 | |
# Copyright 2022 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from parameterized import parameterized | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
LCMScheduler, | |
MultiAdapter, | |
PNDMScheduler, | |
StableDiffusionAdapterPipeline, | |
T2IAdapter, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils import logging | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
load_numpy, | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS | |
from ..test_pipelines_common import PipelineFromPipeTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference | |
enable_full_determinism() | |
class AdapterTests: | |
pipeline_class = StableDiffusionAdapterPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
def get_dummy_components(self, adapter_type, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
time_cond_proj_dim=time_cond_proj_dim, | |
) | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
torch.manual_seed(0) | |
if adapter_type == "full_adapter" or adapter_type == "light_adapter": | |
adapter = T2IAdapter( | |
in_channels=3, | |
channels=[32, 64], | |
num_res_blocks=2, | |
downscale_factor=2, | |
adapter_type=adapter_type, | |
) | |
elif adapter_type == "multi_adapter": | |
adapter = MultiAdapter( | |
[ | |
T2IAdapter( | |
in_channels=3, | |
channels=[32, 64], | |
num_res_blocks=2, | |
downscale_factor=2, | |
adapter_type="full_adapter", | |
), | |
T2IAdapter( | |
in_channels=3, | |
channels=[32, 64], | |
num_res_blocks=2, | |
downscale_factor=2, | |
adapter_type="full_adapter", | |
), | |
] | |
) | |
else: | |
raise ValueError( | |
f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter', 'light_adapter', or 'multi_adapter''" | |
) | |
components = { | |
"adapter": adapter, | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_components_with_full_downscaling(self, adapter_type): | |
"""Get dummy components with x8 VAE downscaling and 4 UNet down blocks. | |
These dummy components are intended to fully-exercise the T2I-Adapter | |
downscaling behavior. | |
""" | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 32, 32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"), | |
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 32, 32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
torch.manual_seed(0) | |
if adapter_type == "full_adapter" or adapter_type == "light_adapter": | |
adapter = T2IAdapter( | |
in_channels=3, | |
channels=[32, 32, 32, 64], | |
num_res_blocks=2, | |
downscale_factor=8, | |
adapter_type=adapter_type, | |
) | |
elif adapter_type == "multi_adapter": | |
adapter = MultiAdapter( | |
[ | |
T2IAdapter( | |
in_channels=3, | |
channels=[32, 32, 32, 64], | |
num_res_blocks=2, | |
downscale_factor=8, | |
adapter_type="full_adapter", | |
), | |
T2IAdapter( | |
in_channels=3, | |
channels=[32, 32, 32, 64], | |
num_res_blocks=2, | |
downscale_factor=8, | |
adapter_type="full_adapter", | |
), | |
] | |
) | |
else: | |
raise ValueError( | |
f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter', 'light_adapter', or 'multi_adapter''" | |
) | |
components = { | |
"adapter": adapter, | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0, height=64, width=64, num_images=1): | |
if num_images == 1: | |
image = floats_tensor((1, 3, height, width), rng=random.Random(seed)).to(device) | |
else: | |
image = [ | |
floats_tensor((1, 3, height, width), rng=random.Random(seed)).to(device) for _ in range(num_images) | |
] | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_attention_slicing_forward_pass(self): | |
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
def test_multiple_image_dimensions(self, dim): | |
"""Test that the T2I-Adapter pipeline supports any input dimension that | |
is divisible by the adapter's `downscale_factor`. This test was added in | |
response to an issue where the T2I Adapter's downscaling padding | |
behavior did not match the UNet's behavior. | |
Note that we have selected `dim` values to produce odd resolutions at | |
each downscaling level. | |
""" | |
components = self.get_dummy_components_with_full_downscaling() | |
sd_pipe = StableDiffusionAdapterPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device, height=dim, width=dim) | |
image = sd_pipe(**inputs).images | |
assert image.shape == (1, dim, dim, 3) | |
def test_adapter_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionAdapterPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4535, 0.5493, 0.4359, 0.5452, 0.6086, 0.4441, 0.5544, 0.501, 0.4859]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_adapter_lcm_custom_timesteps(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionAdapterPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["num_inference_steps"] | |
inputs["timesteps"] = [999, 499] | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4535, 0.5493, 0.4359, 0.5452, 0.6086, 0.4441, 0.5544, 0.501, 0.4859]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
class StableDiffusionFullAdapterPipelineFastTests( | |
AdapterTests, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase | |
): | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
return super().get_dummy_components("full_adapter", time_cond_proj_dim=time_cond_proj_dim) | |
def get_dummy_components_with_full_downscaling(self): | |
return super().get_dummy_components_with_full_downscaling("full_adapter") | |
def test_stable_diffusion_adapter_default_case(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionAdapterPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4858, 0.5500, 0.4278, 0.4669, 0.6184, 0.4322, 0.5010, 0.5033, 0.4746]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 | |
class StableDiffusionLightAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
return super().get_dummy_components("light_adapter", time_cond_proj_dim=time_cond_proj_dim) | |
def get_dummy_components_with_full_downscaling(self): | |
return super().get_dummy_components_with_full_downscaling("light_adapter") | |
def test_stable_diffusion_adapter_default_case(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionAdapterPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4965, 0.5548, 0.4330, 0.4771, 0.6226, 0.4382, 0.5037, 0.5071, 0.4782]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 | |
class StableDiffusionMultiAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
return super().get_dummy_components("multi_adapter", time_cond_proj_dim=time_cond_proj_dim) | |
def get_dummy_components_with_full_downscaling(self): | |
return super().get_dummy_components_with_full_downscaling("multi_adapter") | |
def get_dummy_inputs(self, device, height=64, width=64, seed=0): | |
inputs = super().get_dummy_inputs(device, seed, height=height, width=width, num_images=2) | |
inputs["adapter_conditioning_scale"] = [0.5, 0.5] | |
return inputs | |
def test_stable_diffusion_adapter_default_case(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionAdapterPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4902, 0.5539, 0.4317, 0.4682, 0.6190, 0.4351, 0.5018, 0.5046, 0.4772]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 | |
def test_inference_batch_consistent( | |
self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"] | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
for batch_size in batch_sizes: | |
batched_inputs = {} | |
for name, value in inputs.items(): | |
if name in self.batch_params: | |
# prompt is string | |
if name == "prompt": | |
len_prompt = len(value) | |
# make unequal batch sizes | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
# make last batch super long | |
batched_inputs[name][-1] = 100 * "very long" | |
elif name == "image": | |
batched_images = [] | |
for image in value: | |
batched_images.append(batch_size * [image]) | |
batched_inputs[name] = batched_images | |
else: | |
batched_inputs[name] = batch_size * [value] | |
elif name == "batch_size": | |
batched_inputs[name] = batch_size | |
else: | |
batched_inputs[name] = value | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
batched_inputs["output_type"] = "np" | |
if self.pipeline_class.__name__ == "DanceDiffusionPipeline": | |
batched_inputs.pop("output_type") | |
output = pipe(**batched_inputs) | |
assert len(output[0]) == batch_size | |
batched_inputs["output_type"] = "np" | |
if self.pipeline_class.__name__ == "DanceDiffusionPipeline": | |
batched_inputs.pop("output_type") | |
output = pipe(**batched_inputs)[0] | |
assert output.shape[0] == batch_size | |
logger.setLevel(level=diffusers.logging.WARNING) | |
def test_num_images_per_prompt(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
batch_sizes = [1, 2] | |
num_images_per_prompts = [1, 2] | |
for batch_size in batch_sizes: | |
for num_images_per_prompt in num_images_per_prompts: | |
inputs = self.get_dummy_inputs(torch_device) | |
for key in inputs.keys(): | |
if key in self.batch_params: | |
if key == "image": | |
batched_images = [] | |
for image in inputs[key]: | |
batched_images.append(batch_size * [image]) | |
inputs[key] = batched_images | |
else: | |
inputs[key] = batch_size * [inputs[key]] | |
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] | |
assert images.shape[0] == batch_size * num_images_per_prompt | |
def test_inference_batch_single_identical( | |
self, | |
batch_size=3, | |
test_max_difference=None, | |
test_mean_pixel_difference=None, | |
relax_max_difference=False, | |
expected_max_diff=2e-3, | |
additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
): | |
if test_max_difference is None: | |
# TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems | |
# make sure that batched and non-batched is identical | |
test_max_difference = torch_device != "mps" | |
if test_mean_pixel_difference is None: | |
# TODO same as above | |
test_mean_pixel_difference = torch_device != "mps" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batch_size = batch_size | |
for name, value in inputs.items(): | |
if name in self.batch_params: | |
# prompt is string | |
if name == "prompt": | |
len_prompt = len(value) | |
# make unequal batch sizes | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
# make last batch super long | |
batched_inputs[name][-1] = 100 * "very long" | |
elif name == "image": | |
batched_images = [] | |
for image in value: | |
batched_images.append(batch_size * [image]) | |
batched_inputs[name] = batched_images | |
else: | |
batched_inputs[name] = batch_size * [value] | |
elif name == "batch_size": | |
batched_inputs[name] = batch_size | |
elif name == "generator": | |
batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] | |
else: | |
batched_inputs[name] = value | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
if self.pipeline_class.__name__ != "DanceDiffusionPipeline": | |
batched_inputs["output_type"] = "np" | |
output_batch = pipe(**batched_inputs) | |
assert output_batch[0].shape[0] == batch_size | |
inputs["generator"] = self.get_generator(0) | |
output = pipe(**inputs) | |
logger.setLevel(level=diffusers.logging.WARNING) | |
if test_max_difference: | |
if relax_max_difference: | |
# Taking the median of the largest <n> differences | |
# is resilient to outliers | |
diff = np.abs(output_batch[0][0] - output[0][0]) | |
diff = diff.flatten() | |
diff.sort() | |
max_diff = np.median(diff[-5:]) | |
else: | |
max_diff = np.abs(output_batch[0][0] - output[0][0]).max() | |
assert max_diff < expected_max_diff | |
if test_mean_pixel_difference: | |
assert_mean_pixel_difference(output_batch[0][0], output[0][0]) | |
class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_stable_diffusion_adapter_color(self): | |
adapter_model = "TencentARC/t2iadapter_color_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "snail" | |
image_url = ( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png" | |
) | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_depth(self): | |
adapter_model = "TencentARC/t2iadapter_depth_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "snail" | |
image_url = ( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png" | |
) | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_depth_sd_v14(self): | |
adapter_model = "TencentARC/t2iadapter_depth_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "desk" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png" | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_depth_sd_v15(self): | |
adapter_model = "TencentARC/t2iadapter_depth_sd15v2" | |
sd_model = "runwayml/stable-diffusion-v1-5" | |
prompt = "desk" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png" | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd15v2.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_keypose_sd_v14(self): | |
adapter_model = "TencentARC/t2iadapter_keypose_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "person" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/person_keypose.png" | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_keypose_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_openpose_sd_v14(self): | |
adapter_model = "TencentARC/t2iadapter_openpose_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "person" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/iron_man_pose.png" | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_openpose_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_seg_sd_v14(self): | |
adapter_model = "TencentARC/t2iadapter_seg_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "motorcycle" | |
image_url = ( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png" | |
) | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_seg_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_zoedepth_sd_v15(self): | |
adapter_model = "TencentARC/t2iadapter_zoedepth_sd15v1" | |
sd_model = "runwayml/stable-diffusion-v1-5" | |
prompt = "motorcycle" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motorcycle.png" | |
input_channels = 3 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_zoedepth_sd15v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_model_cpu_offload() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_canny_sd_v14(self): | |
adapter_model = "TencentARC/t2iadapter_canny_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "toy" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" | |
input_channels = 1 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_canny_sd_v15(self): | |
adapter_model = "TencentARC/t2iadapter_canny_sd15v2" | |
sd_model = "runwayml/stable-diffusion-v1-5" | |
prompt = "toy" | |
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" | |
input_channels = 1 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd15v2.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_sketch_sd14(self): | |
adapter_model = "TencentARC/t2iadapter_sketch_sd14v1" | |
sd_model = "CompVis/stable-diffusion-v1-4" | |
prompt = "cat" | |
image_url = ( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png" | |
) | |
input_channels = 1 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd14v1.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_sketch_sd15(self): | |
adapter_model = "TencentARC/t2iadapter_sketch_sd15v2" | |
sd_model = "runwayml/stable-diffusion-v1-5" | |
prompt = "cat" | |
image_url = ( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png" | |
) | |
input_channels = 1 | |
out_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd15v2.npy" | |
image = load_image(image_url) | |
expected_out = load_numpy(out_url) | |
if input_channels == 1: | |
image = image.convert("L") | |
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) | |
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images | |
max_diff = numpy_cosine_similarity_distance(out.flatten(), expected_out.flatten()) | |
assert max_diff < 1e-2 | |
def test_stable_diffusion_adapter_pipeline_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1") | |
pipe = StableDiffusionAdapterPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None | |
) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing(1) | |
pipe.enable_sequential_cpu_offload() | |
image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png" | |
) | |
pipe(prompt="foo", image=image, num_inference_steps=2) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
assert mem_bytes < 5 * 10**9 | |