diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_xl
/test_stable_diffusion_xl_adapter.py
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from parameterized import parameterized | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| EulerDiscreteScheduler, | |
| LCMScheduler, | |
| MultiAdapter, | |
| StableDiffusionXLAdapterPipeline, | |
| T2IAdapter, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils import logging | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS | |
| from ..test_pipelines_common import ( | |
| IPAdapterTesterMixin, | |
| PipelineTesterMixin, | |
| SDXLOptionalComponentsTesterMixin, | |
| assert_mean_pixel_difference, | |
| ) | |
| enable_full_determinism() | |
| class StableDiffusionXLAdapterPipelineFastTests( | |
| IPAdapterTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionXLAdapterPipeline | |
| params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS | |
| batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
| def get_dummy_components(self, adapter_type="full_adapter_xl", time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| # SD2-specific config below | |
| attention_head_dim=(2, 4), | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=(1, 2), | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| sample_size=128, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| if adapter_type == "full_adapter_xl": | |
| adapter = T2IAdapter( | |
| in_channels=3, | |
| channels=[32, 64], | |
| num_res_blocks=2, | |
| downscale_factor=4, | |
| adapter_type=adapter_type, | |
| ) | |
| elif adapter_type == "multi_adapter": | |
| adapter = MultiAdapter( | |
| [ | |
| T2IAdapter( | |
| in_channels=3, | |
| channels=[32, 64], | |
| num_res_blocks=2, | |
| downscale_factor=4, | |
| adapter_type="full_adapter_xl", | |
| ), | |
| T2IAdapter( | |
| in_channels=3, | |
| channels=[32, 64], | |
| num_res_blocks=2, | |
| downscale_factor=4, | |
| adapter_type="full_adapter_xl", | |
| ), | |
| ] | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter_xl', or 'multi_adapter''" | |
| ) | |
| components = { | |
| "adapter": adapter, | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| # "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_components_with_full_downscaling(self, adapter_type="full_adapter_xl"): | |
| """Get dummy components with x8 VAE downscaling and 3 UNet down blocks. | |
| These dummy components are intended to fully-exercise the T2I-Adapter | |
| downscaling behavior. | |
| """ | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), | |
| # SD2-specific config below | |
| attention_head_dim=2, | |
| use_linear_projection=True, | |
| addition_embed_type="text_time", | |
| addition_time_embed_dim=8, | |
| transformer_layers_per_block=1, | |
| projection_class_embeddings_input_dim=80, # 6 * 8 + 32 | |
| cross_attention_dim=64, | |
| ) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 32, 32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| sample_size=128, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| # SD2-specific config below | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| if adapter_type == "full_adapter_xl": | |
| adapter = T2IAdapter( | |
| in_channels=3, | |
| channels=[32, 32, 64], | |
| num_res_blocks=2, | |
| downscale_factor=16, | |
| adapter_type=adapter_type, | |
| ) | |
| elif adapter_type == "multi_adapter": | |
| adapter = MultiAdapter( | |
| [ | |
| T2IAdapter( | |
| in_channels=3, | |
| channels=[32, 32, 64], | |
| num_res_blocks=2, | |
| downscale_factor=16, | |
| adapter_type="full_adapter_xl", | |
| ), | |
| T2IAdapter( | |
| in_channels=3, | |
| channels=[32, 32, 64], | |
| num_res_blocks=2, | |
| downscale_factor=16, | |
| adapter_type="full_adapter_xl", | |
| ), | |
| ] | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Unknown adapter type: {adapter_type}, must be one of 'full_adapter_xl', or 'multi_adapter''" | |
| ) | |
| components = { | |
| "adapter": adapter, | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer_2": tokenizer_2, | |
| # "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0, height=64, width=64, num_images=1): | |
| if num_images == 1: | |
| image = floats_tensor((1, 3, height, width), rng=random.Random(seed)).to(device) | |
| else: | |
| image = [ | |
| floats_tensor((1, 3, height, width), rng=random.Random(seed)).to(device) for _ in range(num_images) | |
| ] | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "image": image, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_ip_adapter_single(self, from_multi=False, expected_pipe_slice=None): | |
| if not from_multi: | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array( | |
| [0.5753, 0.6022, 0.4728, 0.4986, 0.5708, 0.4645, 0.5194, 0.5134, 0.4730] | |
| ) | |
| return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
| def test_stable_diffusion_adapter_default_case(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = sd_pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [0.5752919, 0.6022097, 0.4728038, 0.49861962, 0.57084894, 0.4644975, 0.5193715, 0.5133664, 0.4729858] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 | |
| def test_multiple_image_dimensions(self, dim): | |
| """Test that the T2I-Adapter pipeline supports any input dimension that | |
| is divisible by the adapter's `downscale_factor`. This test was added in | |
| response to an issue where the T2I Adapter's downscaling padding | |
| behavior did not match the UNet's behavior. | |
| Note that we have selected `dim` values to produce odd resolutions at | |
| each downscaling level. | |
| """ | |
| components = self.get_dummy_components_with_full_downscaling() | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device, height=dim, width=dim) | |
| image = sd_pipe(**inputs).images | |
| assert image.shape == (1, dim, dim, 3) | |
| def test_total_downscale_factor(self, adapter_type): | |
| """Test that the T2IAdapter correctly reports its total_downscale_factor.""" | |
| batch_size = 1 | |
| in_channels = 3 | |
| out_channels = [320, 640, 1280, 1280] | |
| in_image_size = 512 | |
| adapter = T2IAdapter( | |
| in_channels=in_channels, | |
| channels=out_channels, | |
| num_res_blocks=2, | |
| downscale_factor=8, | |
| adapter_type=adapter_type, | |
| ) | |
| adapter.to(torch_device) | |
| in_image = floats_tensor((batch_size, in_channels, in_image_size, in_image_size)).to(torch_device) | |
| adapter_state = adapter(in_image) | |
| # Assume that the last element in `adapter_state` has been downsampled the most, and check | |
| # that it matches the `total_downscale_factor`. | |
| expected_out_image_size = in_image_size // adapter.total_downscale_factor | |
| assert adapter_state[-1].shape == ( | |
| batch_size, | |
| out_channels[-1], | |
| expected_out_image_size, | |
| expected_out_image_size, | |
| ) | |
| def test_save_load_optional_components(self): | |
| return self._test_save_load_optional_components() | |
| def test_adapter_sdxl_lcm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.5425, 0.5385, 0.4964, 0.5045, 0.6149, 0.4974, 0.5469, 0.5332, 0.5426]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_adapter_sdxl_lcm_custom_timesteps(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["num_inference_steps"] | |
| inputs["timesteps"] = [999, 499] | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.5425, 0.5385, 0.4964, 0.5045, 0.6149, 0.4974, 0.5469, 0.5332, 0.5426]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| class StableDiffusionXLMultiAdapterPipelineFastTests( | |
| StableDiffusionXLAdapterPipelineFastTests, PipelineTesterMixin, unittest.TestCase | |
| ): | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| return super().get_dummy_components("multi_adapter", time_cond_proj_dim=time_cond_proj_dim) | |
| def get_dummy_components_with_full_downscaling(self): | |
| return super().get_dummy_components_with_full_downscaling("multi_adapter") | |
| def get_dummy_inputs(self, device, seed=0, height=64, width=64): | |
| inputs = super().get_dummy_inputs(device, seed, height, width, num_images=2) | |
| inputs["adapter_conditioning_scale"] = [0.5, 0.5] | |
| return inputs | |
| def test_stable_diffusion_adapter_default_case(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = sd_pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [0.5813032, 0.60995954, 0.47563356, 0.5056669, 0.57199144, 0.4631841, 0.5176794, 0.51252556, 0.47183886] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 | |
| def test_ip_adapter_single(self): | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array([0.5813, 0.6100, 0.4756, 0.5057, 0.5720, 0.4632, 0.5177, 0.5125, 0.4718]) | |
| return super().test_ip_adapter_single(from_multi=True, expected_pipe_slice=expected_pipe_slice) | |
| def test_inference_batch_consistent( | |
| self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"] | |
| ): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| for batch_size in batch_sizes: | |
| batched_inputs = {} | |
| for name, value in inputs.items(): | |
| if name in self.batch_params: | |
| # prompt is string | |
| if name == "prompt": | |
| len_prompt = len(value) | |
| # make unequal batch sizes | |
| batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
| # make last batch super long | |
| batched_inputs[name][-1] = 100 * "very long" | |
| elif name == "image": | |
| batched_images = [] | |
| for image in value: | |
| batched_images.append(batch_size * [image]) | |
| batched_inputs[name] = batched_images | |
| else: | |
| batched_inputs[name] = batch_size * [value] | |
| elif name == "batch_size": | |
| batched_inputs[name] = batch_size | |
| else: | |
| batched_inputs[name] = value | |
| for arg in additional_params_copy_to_batched_inputs: | |
| batched_inputs[arg] = inputs[arg] | |
| batched_inputs["output_type"] = "np" | |
| output = pipe(**batched_inputs) | |
| assert len(output[0]) == batch_size | |
| batched_inputs["output_type"] = "np" | |
| output = pipe(**batched_inputs)[0] | |
| assert output.shape[0] == batch_size | |
| logger.setLevel(level=diffusers.logging.WARNING) | |
| def test_num_images_per_prompt(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| batch_sizes = [1, 2] | |
| num_images_per_prompts = [1, 2] | |
| for batch_size in batch_sizes: | |
| for num_images_per_prompt in num_images_per_prompts: | |
| inputs = self.get_dummy_inputs(torch_device) | |
| for key in inputs.keys(): | |
| if key in self.batch_params: | |
| if key == "image": | |
| batched_images = [] | |
| for image in inputs[key]: | |
| batched_images.append(batch_size * [image]) | |
| inputs[key] = batched_images | |
| else: | |
| inputs[key] = batch_size * [inputs[key]] | |
| images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] | |
| assert images.shape[0] == batch_size * num_images_per_prompt | |
| def test_inference_batch_single_identical( | |
| self, | |
| batch_size=3, | |
| test_max_difference=None, | |
| test_mean_pixel_difference=None, | |
| relax_max_difference=False, | |
| expected_max_diff=2e-3, | |
| additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
| ): | |
| if test_max_difference is None: | |
| # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems | |
| # make sure that batched and non-batched is identical | |
| test_max_difference = torch_device != "mps" | |
| if test_mean_pixel_difference is None: | |
| # TODO same as above | |
| test_mean_pixel_difference = torch_device != "mps" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| batched_inputs = {} | |
| batch_size = batch_size | |
| for name, value in inputs.items(): | |
| if name in self.batch_params: | |
| # prompt is string | |
| if name == "prompt": | |
| len_prompt = len(value) | |
| # make unequal batch sizes | |
| batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
| # make last batch super long | |
| batched_inputs[name][-1] = 100 * "very long" | |
| elif name == "image": | |
| batched_images = [] | |
| for image in value: | |
| batched_images.append(batch_size * [image]) | |
| batched_inputs[name] = batched_images | |
| else: | |
| batched_inputs[name] = batch_size * [value] | |
| elif name == "batch_size": | |
| batched_inputs[name] = batch_size | |
| elif name == "generator": | |
| batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] | |
| else: | |
| batched_inputs[name] = value | |
| for arg in additional_params_copy_to_batched_inputs: | |
| batched_inputs[arg] = inputs[arg] | |
| output_batch = pipe(**batched_inputs) | |
| assert output_batch[0].shape[0] == batch_size | |
| inputs["generator"] = self.get_generator(0) | |
| output = pipe(**inputs) | |
| logger.setLevel(level=diffusers.logging.WARNING) | |
| if test_max_difference: | |
| if relax_max_difference: | |
| # Taking the median of the largest <n> differences | |
| # is resilient to outliers | |
| diff = np.abs(output_batch[0][0] - output[0][0]) | |
| diff = diff.flatten() | |
| diff.sort() | |
| max_diff = np.median(diff[-5:]) | |
| else: | |
| max_diff = np.abs(output_batch[0][0] - output[0][0]).max() | |
| assert max_diff < expected_max_diff | |
| if test_mean_pixel_difference: | |
| assert_mean_pixel_difference(output_batch[0][0], output[0][0]) | |
| def test_adapter_sdxl_lcm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.5313, 0.5375, 0.4942, 0.5021, 0.6142, 0.4968, 0.5434, 0.5311, 0.5448]) | |
| debug = [str(round(i, 4)) for i in image_slice.flatten().tolist()] | |
| print(",".join(debug)) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_adapter_sdxl_lcm_custom_timesteps(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionXLAdapterPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["num_inference_steps"] | |
| inputs["timesteps"] = [999, 499] | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.5313, 0.5375, 0.4942, 0.5021, 0.6142, 0.4968, 0.5434, 0.5311, 0.5448]) | |
| debug = [str(round(i, 4)) for i in image_slice.flatten().tolist()] | |
| print(",".join(debug)) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |