|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
UNet3DConditionModel, |
|
VideoToVideoSDPipeline, |
|
) |
|
from diffusers.utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
is_flaky, |
|
nightly, |
|
numpy_cosine_similarity_distance, |
|
skip_mps, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class VideoToVideoSDPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = VideoToVideoSDPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
test_attention_slicing = False |
|
|
|
|
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"return_dict", |
|
"callback", |
|
"callback_steps", |
|
] |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet3DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=1, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"), |
|
up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"), |
|
cross_attention_dim=32, |
|
attention_head_dim=4, |
|
norm_num_groups=2, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=True, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[ |
|
8, |
|
], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=[ |
|
"DownEncoderBlock2D", |
|
], |
|
up_block_types=["UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=32, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=512, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
|
|
video = floats_tensor((1, 3, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"video": video, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "pt", |
|
} |
|
return inputs |
|
|
|
def test_text_to_video_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = VideoToVideoSDPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["output_type"] = "np" |
|
frames = sd_pipe(**inputs).frames |
|
image_slice = frames[0][0][-3:, -3:, -1] |
|
|
|
assert frames[0][0].shape == (32, 32, 3) |
|
expected_slice = np.array([0.6391, 0.5350, 0.5202, 0.5521, 0.5453, 0.5393, 0.6652, 0.5270, 0.5185]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@is_flaky() |
|
def test_save_load_optional_components(self): |
|
super().test_save_load_optional_components(expected_max_difference=0.001) |
|
|
|
@is_flaky() |
|
def test_dict_tuple_outputs_equivalent(self): |
|
super().test_dict_tuple_outputs_equivalent() |
|
|
|
@is_flaky() |
|
def test_save_load_local(self): |
|
super().test_save_load_local() |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=5e-3) |
|
|
|
|
|
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") |
|
def test_inference_batch_consistent(self): |
|
pass |
|
|
|
|
|
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") |
|
def test_inference_batch_single_identical(self): |
|
pass |
|
|
|
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") |
|
def test_num_images_per_prompt(self): |
|
pass |
|
|
|
def test_progress_bar(self): |
|
return super().test_progress_bar() |
|
|
|
|
|
@nightly |
|
@skip_mps |
|
class VideoToVideoSDPipelineSlowTests(unittest.TestCase): |
|
def test_two_step_model(self): |
|
pipe = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
video = torch.randn((1, 10, 3, 320, 576), generator=generator) |
|
|
|
prompt = "Spiderman is surfing" |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
video_frames = pipe(prompt, video=video, generator=generator, num_inference_steps=3, output_type="np").frames |
|
|
|
expected_array = np.array( |
|
[0.17114258, 0.13720703, 0.08886719, 0.14819336, 0.1730957, 0.24584961, 0.22021484, 0.35180664, 0.2607422] |
|
) |
|
output_array = video_frames[0, 0, :3, :3, 0].flatten() |
|
assert numpy_cosine_similarity_distance(expected_array, output_array) < 1e-3 |
|
|