diffusers-sdxl-controlnet / scripts /convert_kakao_brain_unclip_to_diffusers.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
41.7 kB
import argparse
import tempfile
import torch
from accelerate import load_checkpoint_and_dispatch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import UnCLIPPipeline, UNet2DConditionModel, UNet2DModel
from diffusers.models.transformers.prior_transformer import PriorTransformer
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.schedulers.scheduling_unclip import UnCLIPScheduler
r"""
Example - From the diffusers root directory:
Download weights:
```sh
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/efdf6206d8ed593961593dc029a8affa/decoder-ckpt-step%3D01000000-of-01000000.ckpt
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/4226b831ae0279020d134281f3c31590/improved-sr-ckpt-step%3D1.2M.ckpt
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/85626483eaca9f581e2a78d31ff905ca/prior-ckpt-step%3D01000000-of-01000000.ckpt
$ wget https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/0b62380a75e56f073e2844ab5199153d/ViT-L-14_stats.th
```
Convert the model:
```sh
$ python scripts/convert_kakao_brain_unclip_to_diffusers.py \
--decoder_checkpoint_path ./decoder-ckpt-step\=01000000-of-01000000.ckpt \
--super_res_unet_checkpoint_path ./improved-sr-ckpt-step\=1.2M.ckpt \
--prior_checkpoint_path ./prior-ckpt-step\=01000000-of-01000000.ckpt \
--clip_stat_path ./ViT-L-14_stats.th \
--dump_path <path where to save model>
```
"""
# prior
PRIOR_ORIGINAL_PREFIX = "model"
# Uses default arguments
PRIOR_CONFIG = {}
def prior_model_from_original_config():
model = PriorTransformer(**PRIOR_CONFIG)
return model
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.0 -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"],
}
)
# <original>.clip_img_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"],
}
)
# <original>.text_emb_proj -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"],
}
)
# <original>.text_enc_proj -> <diffusers>.encoder_hidden_states_proj
diffusers_checkpoint.update(
{
"encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"],
"encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"],
}
)
# <original>.positional_embedding -> <diffusers>.positional_embedding
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]})
# <original>.prd_emb -> <diffusers>.prd_embedding
diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]})
# <original>.time_embed.2 -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"],
}
)
# <original>.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.final_ln -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"],
}
)
# <original>.out_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"],
}
)
# clip stats
clip_mean, clip_std = clip_stats_checkpoint
clip_mean = clip_mean[None, :]
clip_std = clip_std[None, :]
diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std})
return diffusers_checkpoint
def prior_attention_to_diffusers(
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim
):
diffusers_checkpoint = {}
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"],
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"],
split=3,
chunk_size=attention_head_dim,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.c_proj -> <diffusers>.to_out.0
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"],
}
)
return diffusers_checkpoint
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix):
diffusers_checkpoint = {
# <original>.c_fc -> <diffusers>.net.0.proj
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"],
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"],
# <original>.c_proj -> <diffusers>.net.2
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"],
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"],
}
return diffusers_checkpoint
# done prior
# decoder
DECODER_ORIGINAL_PREFIX = "model"
# We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can
# update then.
DECODER_CONFIG = {
"sample_size": 64,
"layers_per_block": 3,
"down_block_types": (
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
"SimpleCrossAttnDownBlock2D",
),
"up_block_types": (
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"SimpleCrossAttnUpBlock2D",
"ResnetUpsampleBlock2D",
),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (320, 640, 960, 1280),
"in_channels": 3,
"out_channels": 6,
"cross_attention_dim": 1536,
"class_embed_type": "identity",
"attention_head_dim": 64,
"resnet_time_scale_shift": "scale_shift",
}
def decoder_model_from_original_config():
model = UNet2DConditionModel(**DECODER_CONFIG)
return model
def decoder_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
original_unet_prefix = DECODER_ORIGINAL_PREFIX
num_head_channels = DECODER_CONFIG["attention_head_dim"]
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=num_head_channels,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.input_blocks -> <diffusers>.down_blocks
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
original_unet_prefix=original_unet_prefix,
num_head_channels=num_head_channels,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=num_head_channels,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix))
return diffusers_checkpoint
# done decoder
# text proj
def text_proj_from_original_config():
# From the conditional unet constructor where the dimension of the projected time embeddings is
# constructed
time_embed_dim = DECODER_CONFIG["block_out_channels"][0] * 4
cross_attention_dim = DECODER_CONFIG["cross_attention_dim"]
model = UnCLIPTextProjModel(time_embed_dim=time_embed_dim, cross_attention_dim=cross_attention_dim)
return model
# Note that the input checkpoint is the original decoder checkpoint
def text_proj_original_checkpoint_to_diffusers_checkpoint(checkpoint):
diffusers_checkpoint = {
# <original>.text_seq_proj.0 -> <diffusers>.encoder_hidden_states_proj
"encoder_hidden_states_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.weight"],
"encoder_hidden_states_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.0.bias"],
# <original>.text_seq_proj.1 -> <diffusers>.text_encoder_hidden_states_norm
"text_encoder_hidden_states_norm.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.weight"],
"text_encoder_hidden_states_norm.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_seq_proj.1.bias"],
# <original>.clip_tok_proj -> <diffusers>.clip_extra_context_tokens_proj
"clip_extra_context_tokens_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.weight"],
"clip_extra_context_tokens_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.clip_tok_proj.bias"],
# <original>.text_feat_proj -> <diffusers>.embedding_proj
"embedding_proj.weight": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.weight"],
"embedding_proj.bias": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.text_feat_proj.bias"],
# <original>.cf_param -> <diffusers>.learned_classifier_free_guidance_embeddings
"learned_classifier_free_guidance_embeddings": checkpoint[f"{DECODER_ORIGINAL_PREFIX}.cf_param"],
# <original>.clip_emb -> <diffusers>.clip_image_embeddings_project_to_time_embeddings
"clip_image_embeddings_project_to_time_embeddings.weight": checkpoint[
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.weight"
],
"clip_image_embeddings_project_to_time_embeddings.bias": checkpoint[
f"{DECODER_ORIGINAL_PREFIX}.clip_emb.bias"
],
}
return diffusers_checkpoint
# done text proj
# super res unet first steps
SUPER_RES_UNET_FIRST_STEPS_PREFIX = "model_first_steps"
SUPER_RES_UNET_FIRST_STEPS_CONFIG = {
"sample_size": 256,
"layers_per_block": 3,
"down_block_types": (
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
),
"up_block_types": (
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
),
"block_out_channels": (320, 640, 960, 1280),
"in_channels": 6,
"out_channels": 3,
"add_attention": False,
}
def super_res_unet_first_steps_model_from_original_config():
model = UNet2DModel(**SUPER_RES_UNET_FIRST_STEPS_CONFIG)
return model
def super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
original_unet_prefix = SUPER_RES_UNET_FIRST_STEPS_PREFIX
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix))
return diffusers_checkpoint
# done super res unet first steps
# super res unet last step
SUPER_RES_UNET_LAST_STEP_PREFIX = "model_last_step"
SUPER_RES_UNET_LAST_STEP_CONFIG = {
"sample_size": 256,
"layers_per_block": 3,
"down_block_types": (
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
),
"up_block_types": (
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
),
"block_out_channels": (320, 640, 960, 1280),
"in_channels": 6,
"out_channels": 3,
"add_attention": False,
}
def super_res_unet_last_step_model_from_original_config():
model = UNet2DModel(**SUPER_RES_UNET_LAST_STEP_CONFIG)
return model
def super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
original_unet_prefix = SUPER_RES_UNET_LAST_STEP_PREFIX
diffusers_checkpoint.update(unet_time_embeddings(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_in(checkpoint, original_unet_prefix))
# <original>.input_blocks -> <diffusers>.down_blocks
original_down_block_idx = 1
for diffusers_down_block_idx in range(len(model.down_blocks)):
checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_down_block_idx=diffusers_down_block_idx,
original_down_block_idx=original_down_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_down_block_idx += num_original_down_blocks
diffusers_checkpoint.update(checkpoint_update)
diffusers_checkpoint.update(
unet_midblock_to_diffusers_checkpoint(
model,
checkpoint,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
)
# <original>.output_blocks -> <diffusers>.up_blocks
original_up_block_idx = 0
for diffusers_up_block_idx in range(len(model.up_blocks)):
checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint(
model,
checkpoint,
diffusers_up_block_idx=diffusers_up_block_idx,
original_up_block_idx=original_up_block_idx,
original_unet_prefix=original_unet_prefix,
num_head_channels=None,
)
original_up_block_idx += num_original_up_blocks
diffusers_checkpoint.update(checkpoint_update)
# done <original>.output_blocks -> <diffusers>.up_blocks
diffusers_checkpoint.update(unet_conv_norm_out(checkpoint, original_unet_prefix))
diffusers_checkpoint.update(unet_conv_out(checkpoint, original_unet_prefix))
return diffusers_checkpoint
# done super res unet last step
# unet utils
# <original>.time_embed -> <diffusers>.time_embedding
def unet_time_embeddings(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{original_unet_prefix}.time_embed.0.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{original_unet_prefix}.time_embed.0.bias"],
"time_embedding.linear_2.weight": checkpoint[f"{original_unet_prefix}.time_embed.2.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{original_unet_prefix}.time_embed.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks.0 -> <diffusers>.conv_in
def unet_conv_in(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_in.weight": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.weight"],
"conv_in.bias": checkpoint[f"{original_unet_prefix}.input_blocks.0.0.bias"],
}
)
return diffusers_checkpoint
# <original>.out.0 -> <diffusers>.conv_norm_out
def unet_conv_norm_out(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_norm_out.weight": checkpoint[f"{original_unet_prefix}.out.0.weight"],
"conv_norm_out.bias": checkpoint[f"{original_unet_prefix}.out.0.bias"],
}
)
return diffusers_checkpoint
# <original>.out.2 -> <diffusers>.conv_out
def unet_conv_out(checkpoint, original_unet_prefix):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{
"conv_out.weight": checkpoint[f"{original_unet_prefix}.out.2.weight"],
"conv_out.bias": checkpoint[f"{original_unet_prefix}.out.2.bias"],
}
)
return diffusers_checkpoint
# <original>.input_blocks -> <diffusers>.down_blocks
def unet_downblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, original_unet_prefix, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets"
original_down_block_prefix = f"{original_unet_prefix}.input_blocks"
down_block = model.down_blocks[diffusers_down_block_idx]
num_resnets = len(down_block.resnets)
if down_block.downsamplers is None:
downsampler = False
else:
assert len(down_block.downsamplers) == 1
downsampler = True
# The downsample block is also a resnet
num_resnets += 1
for resnet_idx_inc in range(num_resnets):
full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0"
if downsampler and resnet_idx_inc == num_resnets - 1:
# this is a downsample block
full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0"
else:
# this is a regular resnet block
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if hasattr(down_block, "attentions"):
num_attentions = len(down_block.attentions)
diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets
return diffusers_checkpoint, num_original_down_blocks
# <original>.middle_block -> <diffusers>.mid_block
def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, original_unet_prefix, num_head_channels):
diffusers_checkpoint = {}
# block 0
original_block_idx = 0
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.0",
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}",
)
)
original_block_idx += 1
# optional block 1
if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None:
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
diffusers_attention_prefix="mid_block.attentions.0",
attention_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}",
num_head_channels=num_head_channels,
)
)
original_block_idx += 1
# block 1 or block 2
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint,
diffusers_resnet_prefix="mid_block.resnets.1",
resnet_prefix=f"{original_unet_prefix}.middle_block.{original_block_idx}",
)
)
return diffusers_checkpoint
# <original>.output_blocks -> <diffusers>.up_blocks
def unet_upblock_to_diffusers_checkpoint(
model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, original_unet_prefix, num_head_channels
):
diffusers_checkpoint = {}
diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets"
original_up_block_prefix = f"{original_unet_prefix}.output_blocks"
up_block = model.up_blocks[diffusers_up_block_idx]
num_resnets = len(up_block.resnets)
if up_block.upsamplers is None:
upsampler = False
else:
assert len(up_block.upsamplers) == 1
upsampler = True
# The upsample block is also a resnet
num_resnets += 1
has_attentions = hasattr(up_block, "attentions")
for resnet_idx_inc in range(num_resnets):
if upsampler and resnet_idx_inc == num_resnets - 1:
# this is an upsample block
if has_attentions:
# There is a middle attention block that we skip
original_resnet_block_idx = 2
else:
original_resnet_block_idx = 1
# we add the `minus 1` because the last two resnets are stuck together in the same output block
full_resnet_prefix = (
f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}"
)
full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0"
else:
# this is a regular resnet block
full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0"
full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}"
diffusers_checkpoint.update(
resnet_to_diffusers_checkpoint(
checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix
)
)
if has_attentions:
num_attentions = len(up_block.attentions)
diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions"
for attention_idx_inc in range(num_attentions):
full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1"
full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}"
diffusers_checkpoint.update(
attention_to_diffusers_checkpoint(
checkpoint,
attention_prefix=full_attention_prefix,
diffusers_attention_prefix=full_diffusers_attention_prefix,
num_head_channels=num_head_channels,
)
)
num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets
return diffusers_checkpoint, num_original_down_blocks
def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix):
diffusers_checkpoint = {
f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"],
f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"],
f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"],
f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"],
f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"],
f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"],
f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"],
f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"],
}
skip_connection_prefix = f"{resnet_prefix}.skip_connection"
if f"{skip_connection_prefix}.weight" in checkpoint:
diffusers_checkpoint.update(
{
f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"],
f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"],
}
)
return diffusers_checkpoint
def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels):
diffusers_checkpoint = {}
# <original>.norm -> <diffusers>.group_norm
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"],
f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"],
}
)
# <original>.qkv -> <diffusers>.{query, key, value}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.qkv.bias"],
split=3,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.encoder_kv -> <diffusers>.{context_key, context_value}
[encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions(
weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0],
bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"],
split=2,
chunk_size=num_head_channels,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight,
f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias,
f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight,
f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias,
}
)
# <original>.proj_out (1d conv) -> <diffusers>.proj_attn (linear)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][
:, :, 0
],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"],
}
)
return diffusers_checkpoint
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
assert weights[weights_biases_idx] is None
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
# done unet utils
# Driver functions
def text_encoder():
print("loading CLIP text encoder")
clip_name = "openai/clip-vit-large-patch14"
# sets pad_value to 0
pad_token = "!"
tokenizer_model = CLIPTokenizer.from_pretrained(clip_name, pad_token=pad_token, device_map="auto")
assert tokenizer_model.convert_tokens_to_ids(pad_token) == 0
text_encoder_model = CLIPTextModelWithProjection.from_pretrained(
clip_name,
# `CLIPTextModel` does not support device_map="auto"
# device_map="auto"
)
print("done loading CLIP text encoder")
return text_encoder_model, tokenizer_model
def prior(*, args, checkpoint_map_location):
print("loading prior")
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location)
prior_checkpoint = prior_checkpoint["state_dict"]
clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location)
prior_model = prior_model_from_original_config()
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(
prior_model, prior_checkpoint, clip_stats_checkpoint
)
del prior_checkpoint
del clip_stats_checkpoint
load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True)
print("done loading prior")
return prior_model
def decoder(*, args, checkpoint_map_location):
print("loading decoder")
decoder_checkpoint = torch.load(args.decoder_checkpoint_path, map_location=checkpoint_map_location)
decoder_checkpoint = decoder_checkpoint["state_dict"]
decoder_model = decoder_model_from_original_config()
decoder_diffusers_checkpoint = decoder_original_checkpoint_to_diffusers_checkpoint(
decoder_model, decoder_checkpoint
)
# text proj interlude
# The original decoder implementation includes a set of parameters that are used
# for creating the `encoder_hidden_states` which are what the U-net is conditioned
# on. The diffusers conditional unet directly takes the encoder_hidden_states. We pull
# the parameters into the UnCLIPTextProjModel class
text_proj_model = text_proj_from_original_config()
text_proj_checkpoint = text_proj_original_checkpoint_to_diffusers_checkpoint(decoder_checkpoint)
load_checkpoint_to_model(text_proj_checkpoint, text_proj_model, strict=True)
# done text proj interlude
del decoder_checkpoint
load_checkpoint_to_model(decoder_diffusers_checkpoint, decoder_model, strict=True)
print("done loading decoder")
return decoder_model, text_proj_model
def super_res_unet(*, args, checkpoint_map_location):
print("loading super resolution unet")
super_res_checkpoint = torch.load(args.super_res_unet_checkpoint_path, map_location=checkpoint_map_location)
super_res_checkpoint = super_res_checkpoint["state_dict"]
# model_first_steps
super_res_first_model = super_res_unet_first_steps_model_from_original_config()
super_res_first_steps_checkpoint = super_res_unet_first_steps_original_checkpoint_to_diffusers_checkpoint(
super_res_first_model, super_res_checkpoint
)
# model_last_step
super_res_last_model = super_res_unet_last_step_model_from_original_config()
super_res_last_step_checkpoint = super_res_unet_last_step_original_checkpoint_to_diffusers_checkpoint(
super_res_last_model, super_res_checkpoint
)
del super_res_checkpoint
load_checkpoint_to_model(super_res_first_steps_checkpoint, super_res_first_model, strict=True)
load_checkpoint_to_model(super_res_last_step_checkpoint, super_res_last_model, strict=True)
print("done loading super resolution unet")
return super_res_first_model, super_res_last_model
def load_checkpoint_to_model(checkpoint, model, strict=False):
with tempfile.NamedTemporaryFile() as file:
torch.save(checkpoint, file.name)
del checkpoint
if strict:
model.load_state_dict(torch.load(file.name), strict=True)
else:
load_checkpoint_and_dispatch(model, file.name, device_map="auto")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--prior_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the prior checkpoint to convert.",
)
parser.add_argument(
"--decoder_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the decoder checkpoint to convert.",
)
parser.add_argument(
"--super_res_unet_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the super resolution checkpoint to convert.",
)
parser.add_argument(
"--clip_stat_path", default=None, type=str, required=True, help="Path to the clip stats checkpoint to convert."
)
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
parser.add_argument(
"--debug",
default=None,
type=str,
required=False,
help="Only run a specific stage of the convert script. Used for debugging",
)
args = parser.parse_args()
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
if args.debug is not None:
print(f"debug: only executing {args.debug}")
if args.debug is None:
text_encoder_model, tokenizer_model = text_encoder()
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location)
super_res_first_model, super_res_last_model = super_res_unet(
args=args, checkpoint_map_location=checkpoint_map_location
)
prior_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="sample",
num_train_timesteps=1000,
clip_sample_range=5.0,
)
decoder_scheduler = UnCLIPScheduler(
variance_type="learned_range",
prediction_type="epsilon",
num_train_timesteps=1000,
)
super_res_scheduler = UnCLIPScheduler(
variance_type="fixed_small_log",
prediction_type="epsilon",
num_train_timesteps=1000,
)
print(f"saving Kakao Brain unCLIP to {args.dump_path}")
pipe = UnCLIPPipeline(
prior=prior_model,
decoder=decoder_model,
text_proj=text_proj_model,
tokenizer=tokenizer_model,
text_encoder=text_encoder_model,
super_res_first=super_res_first_model,
super_res_last=super_res_last_model,
prior_scheduler=prior_scheduler,
decoder_scheduler=decoder_scheduler,
super_res_scheduler=super_res_scheduler,
)
pipe.save_pretrained(args.dump_path)
print("done writing Kakao Brain unCLIP")
elif args.debug == "text_encoder":
text_encoder_model, tokenizer_model = text_encoder()
elif args.debug == "prior":
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
elif args.debug == "decoder":
decoder_model, text_proj_model = decoder(args=args, checkpoint_map_location=checkpoint_map_location)
elif args.debug == "super_res_unet":
super_res_first_model, super_res_last_model = super_res_unet(
args=args, checkpoint_map_location=checkpoint_map_location
)
else:
raise ValueError(f"unknown debug value : {args.debug}")