|
import argparse |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
|
|
import onnx |
|
import onnx_graphsurgeon as gs |
|
import torch |
|
from onnx import shape_inference |
|
from packaging import version |
|
from polygraphy.backend.onnx.loader import fold_constants |
|
from torch.onnx import export |
|
|
|
from diffusers import ( |
|
ControlNetModel, |
|
StableDiffusionControlNetImg2ImgPipeline, |
|
) |
|
from diffusers.models.attention_processor import AttnProcessor |
|
from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline |
|
|
|
|
|
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") |
|
is_torch_2_0_1 = version.parse(version.parse(torch.__version__).base_version) == version.parse("2.0.1") |
|
|
|
|
|
class Optimizer: |
|
def __init__(self, onnx_graph, verbose=False): |
|
self.graph = gs.import_onnx(onnx_graph) |
|
self.verbose = verbose |
|
|
|
def info(self, prefix): |
|
if self.verbose: |
|
print( |
|
f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs" |
|
) |
|
|
|
def cleanup(self, return_onnx=False): |
|
self.graph.cleanup().toposort() |
|
if return_onnx: |
|
return gs.export_onnx(self.graph) |
|
|
|
def select_outputs(self, keep, names=None): |
|
self.graph.outputs = [self.graph.outputs[o] for o in keep] |
|
if names: |
|
for i, name in enumerate(names): |
|
self.graph.outputs[i].name = name |
|
|
|
def fold_constants(self, return_onnx=False): |
|
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True) |
|
self.graph = gs.import_onnx(onnx_graph) |
|
if return_onnx: |
|
return onnx_graph |
|
|
|
def infer_shapes(self, return_onnx=False): |
|
onnx_graph = gs.export_onnx(self.graph) |
|
if onnx_graph.ByteSize() > 2147483648: |
|
raise TypeError("ERROR: model size exceeds supported 2GB limit") |
|
else: |
|
onnx_graph = shape_inference.infer_shapes(onnx_graph) |
|
|
|
self.graph = gs.import_onnx(onnx_graph) |
|
if return_onnx: |
|
return onnx_graph |
|
|
|
|
|
def optimize(onnx_graph, name, verbose): |
|
opt = Optimizer(onnx_graph, verbose=verbose) |
|
opt.info(name + ": original") |
|
opt.cleanup() |
|
opt.info(name + ": cleanup") |
|
opt.fold_constants() |
|
opt.info(name + ": fold constants") |
|
|
|
|
|
onnx_opt_graph = opt.cleanup(return_onnx=True) |
|
opt.info(name + ": finished") |
|
return onnx_opt_graph |
|
|
|
|
|
class UNet2DConditionControlNetModel(torch.nn.Module): |
|
def __init__( |
|
self, |
|
unet, |
|
controlnets: ControlNetModel, |
|
): |
|
super().__init__() |
|
self.unet = unet |
|
self.controlnets = controlnets |
|
|
|
def forward( |
|
self, |
|
sample, |
|
timestep, |
|
encoder_hidden_states, |
|
controlnet_conds, |
|
controlnet_scales, |
|
): |
|
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate( |
|
zip(controlnet_conds, controlnet_scales, self.controlnets) |
|
): |
|
down_samples, mid_sample = controlnet( |
|
sample, |
|
timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
controlnet_cond=controlnet_cond, |
|
conditioning_scale=conditioning_scale, |
|
return_dict=False, |
|
) |
|
|
|
|
|
if i == 0: |
|
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample |
|
else: |
|
down_block_res_samples = [ |
|
samples_prev + samples_curr |
|
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples) |
|
] |
|
mid_block_res_sample += mid_sample |
|
|
|
noise_pred = self.unet( |
|
sample, |
|
timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
return_dict=False, |
|
)[0] |
|
return noise_pred |
|
|
|
|
|
class UNet2DConditionXLControlNetModel(torch.nn.Module): |
|
def __init__( |
|
self, |
|
unet, |
|
controlnets: ControlNetModel, |
|
): |
|
super().__init__() |
|
self.unet = unet |
|
self.controlnets = controlnets |
|
|
|
def forward( |
|
self, |
|
sample, |
|
timestep, |
|
encoder_hidden_states, |
|
controlnet_conds, |
|
controlnet_scales, |
|
text_embeds, |
|
time_ids, |
|
): |
|
added_cond_kwargs = {"text_embeds": text_embeds, "time_ids": time_ids} |
|
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate( |
|
zip(controlnet_conds, controlnet_scales, self.controlnets) |
|
): |
|
down_samples, mid_sample = controlnet( |
|
sample, |
|
timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
controlnet_cond=controlnet_cond, |
|
conditioning_scale=conditioning_scale, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
|
|
if i == 0: |
|
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample |
|
else: |
|
down_block_res_samples = [ |
|
samples_prev + samples_curr |
|
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples) |
|
] |
|
mid_block_res_sample += mid_sample |
|
|
|
noise_pred = self.unet( |
|
sample, |
|
timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
return noise_pred |
|
|
|
|
|
def onnx_export( |
|
model, |
|
model_args: tuple, |
|
output_path: Path, |
|
ordered_input_names, |
|
output_names, |
|
dynamic_axes, |
|
opset, |
|
use_external_data_format=False, |
|
): |
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
with torch.inference_mode(), torch.autocast("cuda"): |
|
if is_torch_less_than_1_11: |
|
export( |
|
model, |
|
model_args, |
|
f=output_path.as_posix(), |
|
input_names=ordered_input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
do_constant_folding=True, |
|
use_external_data_format=use_external_data_format, |
|
enable_onnx_checker=True, |
|
opset_version=opset, |
|
) |
|
else: |
|
export( |
|
model, |
|
model_args, |
|
f=output_path.as_posix(), |
|
input_names=ordered_input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
do_constant_folding=True, |
|
opset_version=opset, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def convert_models( |
|
model_path: str, controlnet_path: list, output_path: str, opset: int, fp16: bool = False, sd_xl: bool = False |
|
): |
|
""" |
|
Function to convert models in stable diffusion controlnet pipeline into ONNX format |
|
|
|
Example: |
|
python convert_stable_diffusion_controlnet_to_onnx.py |
|
--model_path danbrown/RevAnimated-v1-2-2 |
|
--controlnet_path lllyasviel/control_v11f1e_sd15_tile ioclab/brightness-controlnet |
|
--output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2 |
|
--fp16 |
|
|
|
Example for SD XL: |
|
python convert_stable_diffusion_controlnet_to_onnx.py |
|
--model_path stabilityai/stable-diffusion-xl-base-1.0 |
|
--controlnet_path SargeZT/sdxl-controlnet-seg |
|
--output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0 |
|
--fp16 |
|
--sd_xl |
|
|
|
Returns: |
|
create 4 onnx models in output path |
|
text_encoder/model.onnx |
|
unet/model.onnx + unet/weights.pb |
|
vae_encoder/model.onnx |
|
vae_decoder/model.onnx |
|
|
|
run test script in diffusers/examples/community |
|
python test_onnx_controlnet.py |
|
--sd_model danbrown/RevAnimated-v1-2-2 |
|
--onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2 |
|
--qr_img_path path-to-qr-code-image |
|
""" |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
if fp16 and torch.cuda.is_available(): |
|
device = "cuda" |
|
elif fp16 and not torch.cuda.is_available(): |
|
raise ValueError("`float16` model export is only supported on GPUs with CUDA") |
|
else: |
|
device = "cpu" |
|
|
|
|
|
controlnets = [] |
|
for path in controlnet_path: |
|
controlnet = ControlNetModel.from_pretrained(path, torch_dtype=dtype).to(device) |
|
if is_torch_2_0_1: |
|
controlnet.set_attn_processor(AttnProcessor()) |
|
controlnets.append(controlnet) |
|
|
|
if sd_xl: |
|
if len(controlnets) == 1: |
|
controlnet = controlnets[0] |
|
else: |
|
raise ValueError("MultiControlNet is not yet supported.") |
|
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
model_path, controlnet=controlnet, torch_dtype=dtype, variant="fp16", use_safetensors=True |
|
).to(device) |
|
else: |
|
pipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( |
|
model_path, controlnet=controlnets, torch_dtype=dtype |
|
).to(device) |
|
|
|
output_path = Path(output_path) |
|
if is_torch_2_0_1: |
|
pipeline.unet.set_attn_processor(AttnProcessor()) |
|
pipeline.vae.set_attn_processor(AttnProcessor()) |
|
|
|
|
|
num_tokens = pipeline.text_encoder.config.max_position_embeddings |
|
text_hidden_size = pipeline.text_encoder.config.hidden_size |
|
text_input = pipeline.tokenizer( |
|
"A sample prompt", |
|
padding="max_length", |
|
max_length=pipeline.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
onnx_export( |
|
pipeline.text_encoder, |
|
|
|
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), |
|
output_path=output_path / "text_encoder" / "model.onnx", |
|
ordered_input_names=["input_ids"], |
|
output_names=["last_hidden_state", "pooler_output"], |
|
dynamic_axes={ |
|
"input_ids": {0: "batch", 1: "sequence"}, |
|
}, |
|
opset=opset, |
|
) |
|
del pipeline.text_encoder |
|
|
|
|
|
if sd_xl: |
|
controlnets = torch.nn.ModuleList(controlnets) |
|
unet_controlnet = UNet2DConditionXLControlNetModel(pipeline.unet, controlnets) |
|
unet_in_channels = pipeline.unet.config.in_channels |
|
unet_sample_size = pipeline.unet.config.sample_size |
|
text_hidden_size = 2048 |
|
img_size = 8 * unet_sample_size |
|
unet_path = output_path / "unet" / "model.onnx" |
|
|
|
onnx_export( |
|
unet_controlnet, |
|
model_args=( |
|
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), |
|
torch.tensor([1.0]).to(device=device, dtype=dtype), |
|
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), |
|
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype), |
|
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype), |
|
torch.randn(2, 1280).to(device=device, dtype=dtype), |
|
torch.rand(2, 6).to(device=device, dtype=dtype), |
|
), |
|
output_path=unet_path, |
|
ordered_input_names=[ |
|
"sample", |
|
"timestep", |
|
"encoder_hidden_states", |
|
"controlnet_conds", |
|
"conditioning_scales", |
|
"text_embeds", |
|
"time_ids", |
|
], |
|
output_names=["noise_pred"], |
|
dynamic_axes={ |
|
"sample": {0: "2B", 2: "H", 3: "W"}, |
|
"encoder_hidden_states": {0: "2B"}, |
|
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"}, |
|
"text_embeds": {0: "2B"}, |
|
"time_ids": {0: "2B"}, |
|
}, |
|
opset=opset, |
|
use_external_data_format=True, |
|
) |
|
unet_model_path = str(unet_path.absolute().as_posix()) |
|
unet_dir = os.path.dirname(unet_model_path) |
|
|
|
shape_inference.infer_shapes_path(unet_model_path, unet_model_path) |
|
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True) |
|
|
|
shutil.rmtree(unet_dir) |
|
os.mkdir(unet_dir) |
|
|
|
onnx.save_model( |
|
unet_opt_graph, |
|
unet_model_path, |
|
save_as_external_data=True, |
|
all_tensors_to_one_file=True, |
|
location="weights.pb", |
|
convert_attribute=False, |
|
) |
|
del pipeline.unet |
|
else: |
|
controlnets = torch.nn.ModuleList(controlnets) |
|
unet_controlnet = UNet2DConditionControlNetModel(pipeline.unet, controlnets) |
|
unet_in_channels = pipeline.unet.config.in_channels |
|
unet_sample_size = pipeline.unet.config.sample_size |
|
img_size = 8 * unet_sample_size |
|
unet_path = output_path / "unet" / "model.onnx" |
|
|
|
onnx_export( |
|
unet_controlnet, |
|
model_args=( |
|
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), |
|
torch.tensor([1.0]).to(device=device, dtype=dtype), |
|
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), |
|
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype), |
|
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype), |
|
), |
|
output_path=unet_path, |
|
ordered_input_names=[ |
|
"sample", |
|
"timestep", |
|
"encoder_hidden_states", |
|
"controlnet_conds", |
|
"conditioning_scales", |
|
], |
|
output_names=["noise_pred"], |
|
dynamic_axes={ |
|
"sample": {0: "2B", 2: "H", 3: "W"}, |
|
"encoder_hidden_states": {0: "2B"}, |
|
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"}, |
|
}, |
|
opset=opset, |
|
use_external_data_format=True, |
|
) |
|
unet_model_path = str(unet_path.absolute().as_posix()) |
|
unet_dir = os.path.dirname(unet_model_path) |
|
|
|
shape_inference.infer_shapes_path(unet_model_path, unet_model_path) |
|
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True) |
|
|
|
shutil.rmtree(unet_dir) |
|
os.mkdir(unet_dir) |
|
|
|
onnx.save_model( |
|
unet_opt_graph, |
|
unet_model_path, |
|
save_as_external_data=True, |
|
all_tensors_to_one_file=True, |
|
location="weights.pb", |
|
convert_attribute=False, |
|
) |
|
del pipeline.unet |
|
|
|
|
|
vae_encoder = pipeline.vae |
|
vae_in_channels = vae_encoder.config.in_channels |
|
vae_sample_size = vae_encoder.config.sample_size |
|
|
|
vae_encoder.forward = lambda sample: vae_encoder.encode(sample).latent_dist.sample() |
|
onnx_export( |
|
vae_encoder, |
|
model_args=(torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),), |
|
output_path=output_path / "vae_encoder" / "model.onnx", |
|
ordered_input_names=["sample"], |
|
output_names=["latent_sample"], |
|
dynamic_axes={ |
|
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
}, |
|
opset=opset, |
|
) |
|
|
|
|
|
vae_decoder = pipeline.vae |
|
vae_latent_channels = vae_decoder.config.latent_channels |
|
|
|
vae_decoder.forward = vae_encoder.decode |
|
onnx_export( |
|
vae_decoder, |
|
model_args=( |
|
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), |
|
), |
|
output_path=output_path / "vae_decoder" / "model.onnx", |
|
ordered_input_names=["latent_sample"], |
|
output_names=["sample"], |
|
dynamic_axes={ |
|
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
}, |
|
opset=opset, |
|
) |
|
del pipeline.vae |
|
|
|
del pipeline |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline") |
|
|
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
required=True, |
|
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", |
|
) |
|
|
|
parser.add_argument( |
|
"--controlnet_path", |
|
nargs="+", |
|
required=True, |
|
help="Path to the `controlnet` checkpoint to convert (either a local directory or on the Hub).", |
|
) |
|
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") |
|
|
|
parser.add_argument( |
|
"--opset", |
|
default=14, |
|
type=int, |
|
help="The version of the ONNX operator set to use.", |
|
) |
|
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") |
|
|
|
args = parser.parse_args() |
|
|
|
convert_models(args.model_path, args.controlnet_path, args.output_path, args.opset, args.fp16, args.sd_xl) |
|
|