svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
6.22 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import TYPE_CHECKING, Dict, List, Union
from ..utils import logging
if TYPE_CHECKING:
# import here to avoid circular imports
from ..models import UNet2DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _translate_into_actual_layer_name(name):
"""Translate user-friendly name (e.g. 'mid') into actual layer name (e.g. 'mid_block.attentions.0')"""
if name == "mid":
return "mid_block.attentions.0"
updown, block, attn = name.split(".")
updown = updown.replace("down", "down_blocks").replace("up", "up_blocks")
block = block.replace("block_", "")
attn = "attentions." + attn
return ".".join((updown, block, attn))
def _maybe_expand_lora_scales(
unet: "UNet2DConditionModel", weight_scales: List[Union[float, Dict]], default_scale=1.0
):
blocks_with_transformer = {
"down": [i for i, block in enumerate(unet.down_blocks) if hasattr(block, "attentions")],
"up": [i for i, block in enumerate(unet.up_blocks) if hasattr(block, "attentions")],
}
transformer_per_block = {"down": unet.config.layers_per_block, "up": unet.config.layers_per_block + 1}
expanded_weight_scales = [
_maybe_expand_lora_scales_for_one_adapter(
weight_for_adapter,
blocks_with_transformer,
transformer_per_block,
unet.state_dict(),
default_scale=default_scale,
)
for weight_for_adapter in weight_scales
]
return expanded_weight_scales
def _maybe_expand_lora_scales_for_one_adapter(
scales: Union[float, Dict],
blocks_with_transformer: Dict[str, int],
transformer_per_block: Dict[str, int],
state_dict: None,
default_scale: float = 1.0,
):
"""
Expands the inputs into a more granular dictionary. See the example below for more details.
Parameters:
scales (`Union[float, Dict]`):
Scales dict to expand.
blocks_with_transformer (`Dict[str, int]`):
Dict with keys 'up' and 'down', showing which blocks have transformer layers
transformer_per_block (`Dict[str, int]`):
Dict with keys 'up' and 'down', showing how many transformer layers each block has
E.g. turns
```python
scales = {"down": 2, "mid": 3, "up": {"block_0": 4, "block_1": [5, 6, 7]}}
blocks_with_transformer = {"down": [1, 2], "up": [0, 1]}
transformer_per_block = {"down": 2, "up": 3}
```
into
```python
{
"down.block_1.0": 2,
"down.block_1.1": 2,
"down.block_2.0": 2,
"down.block_2.1": 2,
"mid": 3,
"up.block_0.0": 4,
"up.block_0.1": 4,
"up.block_0.2": 4,
"up.block_1.0": 5,
"up.block_1.1": 6,
"up.block_1.2": 7,
}
```
"""
if sorted(blocks_with_transformer.keys()) != ["down", "up"]:
raise ValueError("blocks_with_transformer needs to be a dict with keys `'down' and `'up'`")
if sorted(transformer_per_block.keys()) != ["down", "up"]:
raise ValueError("transformer_per_block needs to be a dict with keys `'down' and `'up'`")
if not isinstance(scales, dict):
# don't expand if scales is a single number
return scales
scales = copy.deepcopy(scales)
if "mid" not in scales:
scales["mid"] = default_scale
elif isinstance(scales["mid"], list):
if len(scales["mid"]) == 1:
scales["mid"] = scales["mid"][0]
else:
raise ValueError(f"Expected 1 scales for mid, got {len(scales['mid'])}.")
for updown in ["up", "down"]:
if updown not in scales:
scales[updown] = default_scale
# eg {"down": 1} to {"down": {"block_1": 1, "block_2": 1}}}
if not isinstance(scales[updown], dict):
scales[updown] = {f"block_{i}": copy.deepcopy(scales[updown]) for i in blocks_with_transformer[updown]}
# eg {"down": {"block_1": 1}} to {"down": {"block_1": [1, 1]}}
for i in blocks_with_transformer[updown]:
block = f"block_{i}"
# set not assigned blocks to default scale
if block not in scales[updown]:
scales[updown][block] = default_scale
if not isinstance(scales[updown][block], list):
scales[updown][block] = [scales[updown][block] for _ in range(transformer_per_block[updown])]
elif len(scales[updown][block]) == 1:
# a list specifying scale to each masked IP input
scales[updown][block] = scales[updown][block] * transformer_per_block[updown]
elif len(scales[updown][block]) != transformer_per_block[updown]:
raise ValueError(
f"Expected {transformer_per_block[updown]} scales for {updown}.{block}, got {len(scales[updown][block])}."
)
# eg {"down": "block_1": [1, 1]}} to {"down.block_1.0": 1, "down.block_1.1": 1}
for i in blocks_with_transformer[updown]:
block = f"block_{i}"
for tf_idx, value in enumerate(scales[updown][block]):
scales[f"{updown}.{block}.{tf_idx}"] = value
del scales[updown]
for layer in scales.keys():
if not any(_translate_into_actual_layer_name(layer) in module for module in state_dict.keys()):
raise ValueError(
f"Can't set lora scale for layer {layer}. It either doesn't exist in this unet or it has no attentions."
)
return {_translate_into_actual_layer_name(name): weight for name, weight in scales.items()}