|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin |
|
|
|
|
|
@dataclass |
|
|
|
class DDIMParallelSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
pred_original_sample: Optional[torch.Tensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
|
|
def rescale_zero_terminal_snr(betas): |
|
""" |
|
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) |
|
|
|
|
|
Args: |
|
betas (`torch.Tensor`): |
|
the betas that the scheduler is being initialized with. |
|
|
|
Returns: |
|
`torch.Tensor`: rescaled betas with zero terminal SNR |
|
""" |
|
|
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
alphas_bar_sqrt = alphas_cumprod.sqrt() |
|
|
|
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() |
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() |
|
|
|
|
|
alphas_bar_sqrt -= alphas_bar_sqrt_T |
|
|
|
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) |
|
|
|
|
|
alphas_bar = alphas_bar_sqrt**2 |
|
alphas = alphas_bar[1:] / alphas_bar[:-1] |
|
alphas = torch.cat([alphas_bar[0:1], alphas]) |
|
betas = 1 - alphas |
|
|
|
return betas |
|
|
|
|
|
class DDIMParallelScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising |
|
diffusion probabilistic models (DDPMs) with non-Markovian guidance. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2010.02502 |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample for numerical stability. |
|
clip_sample_range (`float`, default `1.0`): |
|
the maximum magnitude for sample clipping. Valid only when `clip_sample=True`. |
|
set_alpha_to_one (`bool`, default `True`): |
|
each diffusion step uses the value of alphas product at that step and at the previous one. For the final |
|
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, |
|
otherwise it uses the value of alpha at step 0. |
|
steps_offset (`int`, default `0`): |
|
An offset added to the inference steps, as required by some model families. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
thresholding (`bool`, default `False`): |
|
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). |
|
Note that the thresholding method is unsuitable for latent-space diffusion models (such as |
|
stable-diffusion). |
|
dynamic_thresholding_ratio (`float`, default `0.995`): |
|
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen |
|
(https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`. |
|
sample_max_value (`float`, default `1.0`): |
|
the threshold value for dynamic thresholding. Valid only when `thresholding=True`. |
|
timestep_spacing (`str`, default `"leading"`): |
|
The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample |
|
Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information. |
|
rescale_betas_zero_snr (`bool`, default `False`): |
|
whether to rescale the betas to have zero terminal SNR (proposed by https://arxiv.org/pdf/2305.08891.pdf). |
|
This can enable the model to generate very bright and dark samples instead of limiting it to samples with |
|
medium brightness. Loosely related to |
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
_is_ode_scheduler = True |
|
|
|
@register_to_config |
|
|
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
clip_sample: bool = True, |
|
set_alpha_to_one: bool = True, |
|
steps_offset: int = 0, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
clip_sample_range: float = 1.0, |
|
sample_max_value: float = 1.0, |
|
timestep_spacing: str = "leading", |
|
rescale_betas_zero_snr: bool = False, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") |
|
|
|
|
|
if rescale_betas_zero_snr: |
|
self.betas = rescale_zero_terminal_snr(self.betas) |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) |
|
|
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def _get_variance(self, timestep, prev_timestep=None): |
|
if prev_timestep is None: |
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
|
|
return variance |
|
|
|
def _batch_get_variance(self, t, prev_t): |
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] |
|
alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
|
|
return variance |
|
|
|
|
|
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
|
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, *remaining_dims = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = sample.float() |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
s = s.unsqueeze(1) |
|
sample = torch.clamp(sample, -s, s) / s |
|
|
|
sample = sample.reshape(batch_size, channels, *remaining_dims) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
if num_inference_steps > self.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" |
|
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" |
|
f" maximal {self.config.num_train_timesteps} timesteps." |
|
) |
|
|
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = ( |
|
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) |
|
.round()[::-1] |
|
.copy() |
|
.astype(np.int64) |
|
) |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps |
|
|
|
|
|
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'." |
|
) |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: int, |
|
sample: torch.Tensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[DDIMParallelSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
eta (`float`): weight of noise for added noise in diffusion step. |
|
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped |
|
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when |
|
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would |
|
coincide with the one provided as input and `use_clipped_model_output` will have not effect. |
|
generator: random number generator. |
|
variance_noise (`torch.Tensor`): instead of generating noise for the variance using `generator`, we |
|
can directly provide the noise for the variance itself. This is useful for methods such as |
|
CycleDiffusion. (https://arxiv.org/abs/2210.05559) |
|
return_dict (`bool`): option for returning tuple rather than DDIMParallelSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.DDIMParallelSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.DDIMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. |
|
When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
pred_epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output |
|
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction`" |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
pred_original_sample = self._threshold_sample(pred_original_sample) |
|
elif self.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
variance = self._get_variance(timestep, prev_timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
if use_clipped_model_output: |
|
|
|
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon |
|
|
|
|
|
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
|
if eta > 0: |
|
if variance_noise is not None and generator is not None: |
|
raise ValueError( |
|
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" |
|
" `variance_noise` stays `None`." |
|
) |
|
|
|
if variance_noise is None: |
|
variance_noise = randn_tensor( |
|
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype |
|
) |
|
variance = std_dev_t * variance_noise |
|
|
|
prev_sample = prev_sample + variance |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return DDIMParallelSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
def batch_step_no_noise( |
|
self, |
|
model_output: torch.Tensor, |
|
timesteps: List[int], |
|
sample: torch.Tensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once. |
|
Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise |
|
is pre-sampled by the pipeline. |
|
|
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): direct output from learned diffusion model. |
|
timesteps (`List[int]`): |
|
current discrete timesteps in the diffusion chain. This is now a list of integers. |
|
sample (`torch.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
eta (`float`): weight of noise for added noise in diffusion step. |
|
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped |
|
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when |
|
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would |
|
coincide with the one provided as input and `use_clipped_model_output` will have not effect. |
|
|
|
Returns: |
|
`torch.Tensor`: sample tensor at previous timestep. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
assert eta == 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t = timesteps |
|
prev_t = t - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
t = t.view(-1, *([1] * (model_output.ndim - 1))) |
|
prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1))) |
|
|
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(model_output.device) |
|
self.final_alpha_cumprod = self.final_alpha_cumprod.to(model_output.device) |
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] |
|
alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
pred_epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output |
|
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction`" |
|
) |
|
|
|
|
|
if self.config.thresholding: |
|
pred_original_sample = self._threshold_sample(pred_original_sample) |
|
elif self.config.clip_sample: |
|
pred_original_sample = pred_original_sample.clamp( |
|
-self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
variance = self._batch_get_variance(t, prev_t).to(model_output.device).view(*alpha_prod_t_prev.shape) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
if use_clipped_model_output: |
|
|
|
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon |
|
|
|
|
|
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
|
return prev_sample |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) |
|
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
|
|
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: |
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) |
|
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) |
|
timesteps = timesteps.to(sample.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(sample.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample |
|
return velocity |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|