|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils_flax import ( |
|
CommonSchedulerState, |
|
FlaxKarrasDiffusionSchedulers, |
|
FlaxSchedulerMixin, |
|
FlaxSchedulerOutput, |
|
add_noise_common, |
|
get_velocity_common, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class DDPMSchedulerState: |
|
common: CommonSchedulerState |
|
|
|
|
|
init_noise_sigma: jnp.ndarray |
|
timesteps: jnp.ndarray |
|
num_inference_steps: Optional[int] = None |
|
|
|
@classmethod |
|
def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray): |
|
return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps) |
|
|
|
|
|
@dataclass |
|
class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput): |
|
state: DDPMSchedulerState |
|
|
|
|
|
class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin): |
|
""" |
|
Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and |
|
Langevin dynamics sampling. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2006.11239 |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
variance_type (`str`): |
|
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, |
|
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample between -1 and 1 for numerical stability. |
|
prediction_type (`str`, default `epsilon`): |
|
indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`. |
|
`v-prediction` is not supported for this scheduler. |
|
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): |
|
the `dtype` used for params and computation. |
|
""" |
|
|
|
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers] |
|
|
|
dtype: jnp.dtype |
|
|
|
@property |
|
def has_state(self): |
|
return True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[jnp.ndarray] = None, |
|
variance_type: str = "fixed_small", |
|
clip_sample: bool = True, |
|
prediction_type: str = "epsilon", |
|
dtype: jnp.dtype = jnp.float32, |
|
): |
|
self.dtype = dtype |
|
|
|
def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDPMSchedulerState: |
|
if common is None: |
|
common = CommonSchedulerState.create(self) |
|
|
|
|
|
init_noise_sigma = jnp.array(1.0, dtype=self.dtype) |
|
|
|
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] |
|
|
|
return DDPMSchedulerState.create( |
|
common=common, |
|
init_noise_sigma=init_noise_sigma, |
|
timesteps=timesteps, |
|
) |
|
|
|
def scale_model_input( |
|
self, state: DDPMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None |
|
) -> jnp.ndarray: |
|
""" |
|
Args: |
|
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. |
|
sample (`jnp.ndarray`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`jnp.ndarray`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def set_timesteps( |
|
self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple = () |
|
) -> DDPMSchedulerState: |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
state (`DDIMSchedulerState`): |
|
the `FlaxDDPMScheduler` state data class instance. |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
step_ratio = self.config.num_train_timesteps // num_inference_steps |
|
|
|
|
|
timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1] |
|
|
|
return state.replace( |
|
num_inference_steps=num_inference_steps, |
|
timesteps=timesteps, |
|
) |
|
|
|
def _get_variance(self, state: DDPMSchedulerState, t, predicted_variance=None, variance_type=None): |
|
alpha_prod_t = state.common.alphas_cumprod[t] |
|
alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype)) |
|
|
|
|
|
|
|
|
|
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] |
|
|
|
if variance_type is None: |
|
variance_type = self.config.variance_type |
|
|
|
|
|
if variance_type == "fixed_small": |
|
variance = jnp.clip(variance, a_min=1e-20) |
|
|
|
elif variance_type == "fixed_small_log": |
|
variance = jnp.log(jnp.clip(variance, a_min=1e-20)) |
|
elif variance_type == "fixed_large": |
|
variance = state.common.betas[t] |
|
elif variance_type == "fixed_large_log": |
|
|
|
variance = jnp.log(state.common.betas[t]) |
|
elif variance_type == "learned": |
|
return predicted_variance |
|
elif variance_type == "learned_range": |
|
min_log = variance |
|
max_log = state.common.betas[t] |
|
frac = (predicted_variance + 1) / 2 |
|
variance = frac * max_log + (1 - frac) * min_log |
|
|
|
return variance |
|
|
|
def step( |
|
self, |
|
state: DDPMSchedulerState, |
|
model_output: jnp.ndarray, |
|
timestep: int, |
|
sample: jnp.ndarray, |
|
key: Optional[jax.Array] = None, |
|
return_dict: bool = True, |
|
) -> Union[FlaxDDPMSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance. |
|
model_output (`jnp.ndarray`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`jnp.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
key (`jax.Array`): a PRNG key. |
|
return_dict (`bool`): option for returning tuple rather than FlaxDDPMSchedulerOutput class |
|
|
|
Returns: |
|
[`FlaxDDPMSchedulerOutput`] or `tuple`: [`FlaxDDPMSchedulerOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
|
|
if key is None: |
|
key = jax.random.key(0) |
|
|
|
if ( |
|
len(model_output.shape) > 1 |
|
and model_output.shape[1] == sample.shape[1] * 2 |
|
and self.config.variance_type in ["learned", "learned_range"] |
|
): |
|
model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1) |
|
else: |
|
predicted_variance = None |
|
|
|
|
|
alpha_prod_t = state.common.alphas_cumprod[t] |
|
alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype)) |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " |
|
" for the FlaxDDPMScheduler." |
|
) |
|
|
|
|
|
if self.config.clip_sample: |
|
pred_original_sample = jnp.clip(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * state.common.betas[t]) / beta_prod_t |
|
current_sample_coeff = state.common.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
|
|
|
|
|
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample |
|
|
|
|
|
def random_variance(): |
|
split_key = jax.random.split(key, num=1)[0] |
|
noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype) |
|
return (self._get_variance(state, t, predicted_variance=predicted_variance) ** 0.5) * noise |
|
|
|
variance = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype)) |
|
|
|
pred_prev_sample = pred_prev_sample + variance |
|
|
|
if not return_dict: |
|
return (pred_prev_sample, state) |
|
|
|
return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state) |
|
|
|
def add_noise( |
|
self, |
|
state: DDPMSchedulerState, |
|
original_samples: jnp.ndarray, |
|
noise: jnp.ndarray, |
|
timesteps: jnp.ndarray, |
|
) -> jnp.ndarray: |
|
return add_noise_common(state.common, original_samples, noise, timesteps) |
|
|
|
def get_velocity( |
|
self, |
|
state: DDPMSchedulerState, |
|
sample: jnp.ndarray, |
|
noise: jnp.ndarray, |
|
timesteps: jnp.ndarray, |
|
) -> jnp.ndarray: |
|
return get_velocity_common(state.common, sample, noise, timesteps) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|