|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput, logging |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
|
|
class EulerAncestralDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
pred_original_sample: Optional[torch.Tensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
|
|
def rescale_zero_terminal_snr(betas): |
|
""" |
|
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) |
|
|
|
|
|
Args: |
|
betas (`torch.Tensor`): |
|
the betas that the scheduler is being initialized with. |
|
|
|
Returns: |
|
`torch.Tensor`: rescaled betas with zero terminal SNR |
|
""" |
|
|
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
alphas_bar_sqrt = alphas_cumprod.sqrt() |
|
|
|
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() |
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() |
|
|
|
|
|
alphas_bar_sqrt -= alphas_bar_sqrt_T |
|
|
|
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) |
|
|
|
|
|
alphas_bar = alphas_bar_sqrt**2 |
|
alphas = alphas_bar[1:] / alphas_bar[:-1] |
|
alphas = torch.cat([alphas_bar[0:1], alphas]) |
|
betas = 1 - alphas |
|
|
|
return betas |
|
|
|
|
|
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Ancestral sampling with Euler method steps. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps, as required by some model families. |
|
rescale_betas_zero_snr (`bool`, defaults to `False`): |
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and |
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to |
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
rescale_betas_zero_snr: bool = False, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") |
|
|
|
if rescale_betas_zero_snr: |
|
self.betas = rescale_zero_terminal_snr(self.betas) |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
if rescale_betas_zero_snr: |
|
|
|
|
|
self.alphas_cumprod[-1] = 2**-24 |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) |
|
self.sigmas = torch.from_numpy(sigmas) |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.is_scale_input_called = False |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
@property |
|
def init_noise_sigma(self): |
|
|
|
if self.config.timestep_spacing in ["linspace", "trailing"]: |
|
return self.sigmas.max() |
|
|
|
return (self.sigmas.max() ** 2 + 1) ** 0.5 |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sample = sample / ((sigma**2 + 1) ** 0.5) |
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[ |
|
::-1 |
|
].copy() |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." |
|
) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
|
self.sigmas = torch.from_numpy(sigmas).to(device=device) |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device=device) |
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: Union[float, torch.Tensor], |
|
sample: torch.Tensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, |
|
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
elif self.config.prediction_type == "sample": |
|
raise NotImplementedError("prediction_type not implemented yet: sample") |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
sigma_from = self.sigmas[self.step_index] |
|
sigma_to = self.sigmas[self.step_index + 1] |
|
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 |
|
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma |
|
|
|
dt = sigma_down - sigma |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
device = model_output.device |
|
noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) |
|
|
|
prev_sample = prev_sample + noise * sigma_up |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerAncestralDiscreteSchedulerOutput( |
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample |
|
) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.Tensor, |
|
) -> torch.Tensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timesteps.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timesteps.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|