|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import importlib |
|
import sys |
|
import time |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from packaging import version |
|
|
|
from diffusers import ( |
|
ControlNetModel, |
|
EulerDiscreteScheduler, |
|
LCMScheduler, |
|
StableDiffusionXLAdapterPipeline, |
|
StableDiffusionXLControlNetPipeline, |
|
StableDiffusionXLPipeline, |
|
T2IAdapter, |
|
) |
|
from diffusers.utils.import_utils import is_accelerate_available |
|
from diffusers.utils.testing_utils import ( |
|
load_image, |
|
nightly, |
|
numpy_cosine_similarity_distance, |
|
require_peft_backend, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
sys.path.append(".") |
|
|
|
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal |
|
|
|
|
|
if is_accelerate_available(): |
|
from accelerate.utils import release_memory |
|
|
|
|
|
class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): |
|
has_two_text_encoders = True |
|
pipeline_class = StableDiffusionXLPipeline |
|
scheduler_cls = EulerDiscreteScheduler |
|
scheduler_kwargs = { |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"beta_schedule": "scaled_linear", |
|
"timestep_spacing": "leading", |
|
"steps_offset": 1, |
|
} |
|
unet_kwargs = { |
|
"block_out_channels": (32, 64), |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), |
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), |
|
"attention_head_dim": (2, 4), |
|
"use_linear_projection": True, |
|
"addition_embed_type": "text_time", |
|
"addition_time_embed_dim": 8, |
|
"transformer_layers_per_block": (1, 2), |
|
"projection_class_embeddings_input_dim": 80, |
|
"cross_attention_dim": 64, |
|
} |
|
vae_kwargs = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
"sample_size": 128, |
|
} |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
@require_peft_backend |
|
class LoraSDXLIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_sdxl_0_9_lora_one(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") |
|
lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora" |
|
lora_filename = "daiton-xl-lora-test.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_0_9_lora_two(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") |
|
lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora" |
|
lora_filename = "saijo.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_0_9_lora_three(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") |
|
lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora" |
|
lora_filename = "kame_sdxl_v2-000020-16rank.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 5e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_blockwise_lora(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset") |
|
scales = { |
|
"unet": { |
|
"down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]}, |
|
"mid": 1.0, |
|
"up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]}, |
|
}, |
|
} |
|
pipe.set_adapters(["offset"], [scales]) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([00.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_lcm_lora(self): |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdxl" |
|
|
|
pipe.load_lora_weights(lora_model_id) |
|
|
|
image = pipe( |
|
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 |
|
).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png" |
|
) |
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image) |
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_fusion(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
pipe.fuse_lora() |
|
|
|
|
|
pipe.unload_lora_weights() |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
|
|
expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-4 |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_unfusion(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.fuse_lora() |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 |
|
).images |
|
images_with_fusion = images.flatten() |
|
|
|
pipe.unfuse_lora() |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 |
|
).images |
|
images_without_fusion = images.flatten() |
|
|
|
max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion) |
|
assert max_diff < 1e-4 |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_unfusion_effectivity(self): |
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
original_image_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.fuse_lora() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
_ = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.unload_lora_weights() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
images_without_fusion_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice) |
|
assert max_diff < 1e-3 |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_lora_fusion_efficiency(self): |
|
generator = torch.Generator().manual_seed(0) |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
) |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
start_time = time.time() |
|
for _ in range(3): |
|
pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
end_time = time.time() |
|
elapsed_time_non_fusion = end_time - start_time |
|
|
|
del pipe |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
) |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
|
|
|
|
|
|
pipe.unload_lora_weights() |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
start_time = time.time() |
|
for _ in range(3): |
|
pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
end_time = time.time() |
|
elapsed_time_fusion = end_time - start_time |
|
|
|
self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion) |
|
|
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_last_ben(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_model_cpu_offload() |
|
lora_model_id = "TheLastBen/Papercut_SDXL" |
|
lora_filename = "papercut.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_1_0_fuse_unfuse_all(self): |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
) |
|
text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict()) |
|
text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict()) |
|
unet_sd = copy.deepcopy(pipe.unet.state_dict()) |
|
|
|
pipe.load_lora_weights( |
|
"davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16 |
|
) |
|
|
|
fused_te_state_dict = pipe.text_encoder.state_dict() |
|
fused_te_2_state_dict = pipe.text_encoder_2.state_dict() |
|
unet_state_dict = pipe.unet.state_dict() |
|
|
|
peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0") |
|
|
|
def remap_key(key, sd): |
|
|
|
if (key in sd) or (not peft_ge_070): |
|
return key |
|
|
|
|
|
if key.endswith(".weight"): |
|
key = key[:-7] + ".base_layer.weight" |
|
elif key.endswith(".bias"): |
|
key = key[:-5] + ".base_layer.bias" |
|
return key |
|
|
|
for key, value in text_encoder_1_sd.items(): |
|
key = remap_key(key, fused_te_state_dict) |
|
self.assertTrue(torch.allclose(fused_te_state_dict[key], value)) |
|
|
|
for key, value in text_encoder_2_sd.items(): |
|
key = remap_key(key, fused_te_2_state_dict) |
|
self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value)) |
|
|
|
for key, value in unet_state_dict.items(): |
|
self.assertTrue(torch.allclose(unet_state_dict[key], value)) |
|
|
|
pipe.fuse_lora() |
|
pipe.unload_lora_weights() |
|
|
|
assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict()) |
|
assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict()) |
|
assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict()) |
|
|
|
release_memory(pipe) |
|
del unet_sd, text_encoder_1_sd, text_encoder_2_sd |
|
|
|
def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self): |
|
generator = torch.Generator().manual_seed(0) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipe.enable_sequential_cpu_offload() |
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora" |
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" |
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
|
|
images = images[0, -3:, -3:, -1].flatten() |
|
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_controlnet_canny_lora(self): |
|
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet |
|
) |
|
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "corgi" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (768, 512, 3) |
|
|
|
original_image = images[0, -3:, -3:, -1].flatten() |
|
expected_image = np.array([0.4574, 0.4487, 0.4435, 0.5163, 0.4396, 0.4411, 0.518, 0.4465, 0.4333]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_image, original_image) |
|
assert max_diff < 1e-4 |
|
|
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
def test_sdxl_t2i_adapter_canny_lora(self): |
|
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to( |
|
"cpu" |
|
) |
|
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
adapter=adapter, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
) |
|
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors") |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "toy" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (768, 512, 3) |
|
|
|
image_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226]) |
|
assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4 |
|
|
|
@nightly |
|
def test_sequential_fuse_unfuse(self): |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.fuse_lora() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
image_slice = images[0, -3:, -3:, -1].flatten() |
|
|
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
pipe.unfuse_lora() |
|
|
|
|
|
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) |
|
pipe.fuse_lora() |
|
|
|
generator = torch.Generator().manual_seed(0) |
|
images_2 = pipe( |
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 |
|
).images |
|
image_slice_2 = images_2[0, -3:, -3:, -1].flatten() |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2) |
|
assert max_diff < 1e-3 |
|
pipe.unload_lora_weights() |
|
release_memory(pipe) |
|
|
|
@nightly |
|
def test_integration_logits_multi_adapter(self): |
|
path = "stabilityai/stable-diffusion-xl-base-1.0" |
|
lora_id = "CiroN2022/toy-face" |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy") |
|
pipe = pipe.to(torch_device) |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
prompt = "toy_face of a hacker with a hoodie" |
|
|
|
lora_scale = 0.9 |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
num_inference_steps=30, |
|
generator=torch.manual_seed(0), |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
output_type="np", |
|
).images |
|
expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539]) |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
assert max_diff < 1e-3 |
|
|
|
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") |
|
pipe.set_adapters("pixel") |
|
|
|
prompt = "pixel art, a hacker with a hoodie, simple, flat colors" |
|
images = pipe( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array( |
|
[0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889] |
|
) |
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
assert max_diff < 1e-3 |
|
|
|
|
|
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0]) |
|
images = pipe( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs={"scale": 1.0}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909]) |
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
assert max_diff < 1e-3 |
|
|
|
|
|
pipe.disable_lora() |
|
images = pipe( |
|
prompt, |
|
num_inference_steps=30, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487]) |
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
assert max_diff < 1e-3 |
|
|
|
@nightly |
|
def test_integration_logits_for_dora_lora(self): |
|
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") |
|
pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya") |
|
pipeline.enable_model_cpu_offload() |
|
|
|
images = pipeline( |
|
"photo of ohwx dog", |
|
num_inference_steps=10, |
|
generator=torch.manual_seed(0), |
|
output_type="np", |
|
).images |
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten() |
|
expected_slice_scale = np.array([0.3932, 0.3742, 0.4429, 0.3737, 0.3504, 0.433, 0.3948, 0.3769, 0.4516]) |
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) |
|
assert max_diff < 1e-3 |
|
|