|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
import unittest |
|
from itertools import product |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
LCMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.import_utils import is_peft_available |
|
from diffusers.utils.testing_utils import ( |
|
floats_tensor, |
|
require_peft_backend, |
|
require_peft_version_greater, |
|
skip_mps, |
|
torch_device, |
|
) |
|
|
|
|
|
if is_peft_available(): |
|
from peft import LoraConfig |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
from peft.utils import get_peft_model_state_dict |
|
|
|
|
|
def state_dicts_almost_equal(sd1, sd2): |
|
sd1 = dict(sorted(sd1.items())) |
|
sd2 = dict(sorted(sd2.items())) |
|
|
|
models_are_equal = True |
|
for ten1, ten2 in zip(sd1.values(), sd2.values()): |
|
if (ten1 - ten2).abs().max() > 1e-3: |
|
models_are_equal = False |
|
|
|
return models_are_equal |
|
|
|
|
|
def check_if_lora_correctly_set(model) -> bool: |
|
""" |
|
Checks if the LoRA layers are correctly set with peft |
|
""" |
|
for module in model.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
return True |
|
return False |
|
|
|
|
|
@require_peft_backend |
|
class PeftLoraLoaderMixinTests: |
|
pipeline_class = None |
|
scheduler_cls = None |
|
scheduler_kwargs = None |
|
has_two_text_encoders = False |
|
unet_kwargs = None |
|
vae_kwargs = None |
|
|
|
def get_dummy_components(self, scheduler_cls=None, use_dora=False): |
|
scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls |
|
rank = 4 |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel(**self.unet_kwargs) |
|
|
|
scheduler = scheduler_cls(**self.scheduler_kwargs) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL(**self.vae_kwargs) |
|
|
|
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
|
|
if self.has_two_text_encoders: |
|
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") |
|
|
|
text_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], |
|
init_lora_weights=False, |
|
use_dora=use_dora, |
|
) |
|
|
|
unet_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"], |
|
init_lora_weights=False, |
|
use_dora=use_dora, |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
pipeline_components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"image_encoder": None, |
|
"feature_extractor": None, |
|
} |
|
else: |
|
pipeline_components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
|
|
return pipeline_components, text_lora_config, unet_lora_config |
|
|
|
def get_dummy_inputs(self, with_generator=True): |
|
batch_size = 1 |
|
sequence_length = 10 |
|
num_channels = 4 |
|
sizes = (32, 32) |
|
|
|
generator = torch.manual_seed(0) |
|
noise = floats_tensor((batch_size, num_channels) + sizes) |
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) |
|
|
|
pipeline_inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"num_inference_steps": 5, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
if with_generator: |
|
pipeline_inputs.update({"generator": generator}) |
|
|
|
return noise, input_ids, pipeline_inputs |
|
|
|
|
|
def get_dummy_tokens(self): |
|
max_seq_length = 77 |
|
|
|
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) |
|
|
|
prepared_inputs = {} |
|
prepared_inputs["input_ids"] = inputs |
|
return prepared_inputs |
|
|
|
def test_simple_inference(self): |
|
""" |
|
Tests a simple inference and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
_, _, inputs = self.get_dummy_inputs() |
|
output_no_lora = pipe(**inputs).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
def test_simple_inference_with_text_lora(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_text_lora_and_scale(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder + scale argument |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
output_lora_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} |
|
).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + scale should change the output", |
|
) |
|
|
|
output_lora_0_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} |
|
).images |
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + 0 scale should lead to same result as no LoRA", |
|
) |
|
|
|
def test_simple_inference_with_text_lora_fused(self): |
|
""" |
|
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_text_lora_unloaded(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.unload_lora_weights() |
|
|
|
self.assertFalse( |
|
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
self.assertFalse( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), |
|
"Lora not correctly unloaded in text encoder 2", |
|
) |
|
|
|
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should change the output", |
|
) |
|
|
|
def test_simple_inference_with_text_lora_save_load(self): |
|
""" |
|
Tests a simple usecase where users could use saving utilities for LoRA. |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) |
|
if self.has_two_text_encoders: |
|
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) |
|
|
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
text_encoder_2_lora_layers=text_encoder_2_state_dict, |
|
safe_serialization=False, |
|
) |
|
else: |
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
safe_serialization=False, |
|
) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
pipe.unload_lora_weights() |
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) |
|
|
|
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_with_partial_text_lora(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder |
|
with different ranks and some adapters removed |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, _, _ = self.get_dummy_components(scheduler_cls) |
|
|
|
text_lora_config = LoraConfig( |
|
r=4, |
|
rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3}, |
|
lora_alpha=4, |
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], |
|
init_lora_weights=False, |
|
use_dora=False, |
|
) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
|
|
state_dict = { |
|
f"text_encoder.{module_name}": param |
|
for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items() |
|
if "text_model.encoder.layers.4" not in module_name |
|
} |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
state_dict.update( |
|
{ |
|
f"text_encoder_2.{module_name}": param |
|
for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items() |
|
if "text_model.encoder.layers.4" not in module_name |
|
} |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
|
|
pipe.unload_lora_weights() |
|
pipe.load_lora_weights(state_dict) |
|
|
|
output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3), |
|
"Removing adapters should change the output", |
|
) |
|
|
|
def test_simple_inference_save_pretrained(self): |
|
""" |
|
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
|
|
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname) |
|
pipe_from_pretrained.to(torch_device) |
|
|
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder), |
|
"Lora not correctly set in text encoder", |
|
) |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2), |
|
"Lora not correctly set in text encoder 2", |
|
) |
|
|
|
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_save_load(self): |
|
""" |
|
Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) |
|
unet_state_dict = get_peft_model_state_dict(pipe.unet) |
|
if self.has_two_text_encoders: |
|
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) |
|
|
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
text_encoder_2_lora_layers=text_encoder_2_state_dict, |
|
unet_lora_layers=unet_state_dict, |
|
safe_serialization=False, |
|
) |
|
else: |
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
unet_lora_layers=unet_state_dict, |
|
safe_serialization=False, |
|
) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
pipe.unload_lora_weights() |
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) |
|
|
|
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_and_scale(self): |
|
""" |
|
Tests a simple inference with lora attached on the text encoder + Unet + scale argument |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
output_lora_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} |
|
).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + scale should change the output", |
|
) |
|
|
|
output_lora_0_scale = pipe( |
|
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} |
|
).images |
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + 0 scale should lead to same result as no LoRA", |
|
) |
|
|
|
self.assertTrue( |
|
pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0, |
|
"The scaling parameter has not been correctly restored!", |
|
) |
|
|
|
def test_simple_inference_with_text_lora_unet_fused(self): |
|
""" |
|
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model |
|
and makes sure it works as expected - with unet |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_unloaded(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.unload_lora_weights() |
|
|
|
self.assertFalse( |
|
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" |
|
) |
|
self.assertFalse(check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertFalse( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), |
|
"Lora not correctly unloaded in text encoder 2", |
|
) |
|
|
|
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should change the output", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_lora_unfused(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.fuse_lora() |
|
|
|
output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.unfuse_lora() |
|
|
|
output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers") |
|
|
|
if self.has_two_text_encoders: |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers" |
|
) |
|
|
|
|
|
self.assertTrue( |
|
np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should change the output", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set them |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.set_adapters("adapter-1") |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2") |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.disable_lora() |
|
|
|
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_block_scale(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
one adapter and set differnt weights for different blocks (i.e. block lora) |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
weights_1 = {"text_encoder": 2, "unet": {"down": 5}} |
|
pipe.set_adapters("adapter-1", weights_1) |
|
output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
weights_2 = {"unet": {"up": 5}} |
|
pipe.set_adapters("adapter-1", weights_2) |
|
output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertFalse( |
|
np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3), |
|
"LoRA weights 1 and 2 should give different results", |
|
) |
|
self.assertFalse( |
|
np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3), |
|
"No adapter and LoRA weights 1 should give different results", |
|
) |
|
self.assertFalse( |
|
np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3), |
|
"No adapter and LoRA weights 2 should give different results", |
|
) |
|
|
|
pipe.disable_lora() |
|
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter_block_lora(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set differnt weights for different blocks (i.e. block lora) |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
scales_1 = {"text_encoder": 2, "unet": {"down": 5}} |
|
scales_2 = {"unet": {"down": 5, "mid": 5}} |
|
pipe.set_adapters("adapter-1", scales_1) |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2", scales_2) |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.disable_lora() |
|
|
|
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1]) |
|
|
|
def test_simple_inference_with_text_unet_block_scale_for_all_dict_options(self): |
|
"""Tests that any valid combination of lora block scales can be used in pipe.set_adapter""" |
|
|
|
def updown_options(blocks_with_tf, layers_per_block, value): |
|
""" |
|
Generate every possible combination for how a lora weight dict for the up/down part can be. |
|
E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ... |
|
""" |
|
num_val = value |
|
list_val = [value] * layers_per_block |
|
|
|
node_opts = [None, num_val, list_val] |
|
node_opts_foreach_block = [node_opts] * len(blocks_with_tf) |
|
|
|
updown_opts = [num_val] |
|
for nodes in product(*node_opts_foreach_block): |
|
if all(n is None for n in nodes): |
|
continue |
|
opt = {} |
|
for b, n in zip(blocks_with_tf, nodes): |
|
if n is not None: |
|
opt["block_" + str(b)] = n |
|
updown_opts.append(opt) |
|
return updown_opts |
|
|
|
def all_possible_dict_opts(unet, value): |
|
""" |
|
Generate every possible combination for how a lora weight dict can be. |
|
E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ... |
|
""" |
|
|
|
down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")] |
|
up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")] |
|
|
|
layers_per_block = unet.config.layers_per_block |
|
|
|
text_encoder_opts = [None, value] |
|
text_encoder_2_opts = [None, value] |
|
mid_opts = [None, value] |
|
down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value) |
|
up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value) |
|
|
|
opts = [] |
|
|
|
for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts): |
|
if all(o is None for o in (t1, t2, d, m, u)): |
|
continue |
|
opt = {} |
|
if t1 is not None: |
|
opt["text_encoder"] = t1 |
|
if t2 is not None: |
|
opt["text_encoder_2"] = t2 |
|
if all(o is None for o in (d, m, u)): |
|
|
|
continue |
|
opt["unet"] = {} |
|
if d is not None: |
|
opt["unet"]["down"] = d |
|
if m is not None: |
|
opt["unet"]["mid"] = m |
|
if u is not None: |
|
opt["unet"]["up"] = u |
|
opts.append(opt) |
|
|
|
return opts |
|
|
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(self.scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
|
|
for scale_dict in all_possible_dict_opts(pipe.unet, value=1234): |
|
|
|
if not self.has_two_text_encoders and "text_encoder_2" in scale_dict: |
|
del scale_dict["text_encoder_2"] |
|
|
|
pipe.set_adapters("adapter-1", scale_dict) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set/delete them |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.set_adapters("adapter-1") |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2") |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.delete_adapters("adapter-1") |
|
output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
pipe.delete_adapters("adapter-2") |
|
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
pipe.delete_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
def test_simple_inference_with_text_unet_multi_adapter_weighted(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, attaches |
|
multiple adapters and set them |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.set_adapters("adapter-1") |
|
|
|
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters("adapter-2") |
|
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
|
|
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and 2 should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 1 and mixed adapters should give different results", |
|
) |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Adapter 2 and mixed adapters should give different results", |
|
) |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6]) |
|
output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertFalse( |
|
np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3), |
|
"Weighted adapter and mixed adapter should give different results", |
|
) |
|
|
|
pipe.disable_lora() |
|
|
|
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), |
|
"output with no lora and output with lora disabled should give same results", |
|
) |
|
|
|
@skip_mps |
|
def test_lora_fuse_nan(self): |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
|
|
with torch.no_grad(): |
|
pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float( |
|
"inf" |
|
) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
pipe.fuse_lora(safe_fusing=True) |
|
|
|
|
|
pipe.fuse_lora(safe_fusing=False) |
|
|
|
out = pipe("test", num_inference_steps=2, output_type="np").images |
|
|
|
self.assertTrue(np.isnan(out).all()) |
|
|
|
def test_get_adapters(self): |
|
""" |
|
Tests a simple usecase where we attach multiple adapters and check if the results |
|
are the expected results |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
adapter_names = pipe.get_active_adapters() |
|
self.assertListEqual(adapter_names, ["adapter-1"]) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
adapter_names = pipe.get_active_adapters() |
|
self.assertListEqual(adapter_names, ["adapter-2"]) |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"]) |
|
|
|
def test_get_list_adapters(self): |
|
""" |
|
Tests a simple usecase where we attach multiple adapters and check if the results |
|
are the expected results |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
adapter_names = pipe.get_list_adapters() |
|
self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]}) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
adapter_names = pipe.get_list_adapters() |
|
self.assertDictEqual( |
|
adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]} |
|
) |
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
self.assertDictEqual( |
|
pipe.get_list_adapters(), |
|
{"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]}, |
|
) |
|
|
|
pipe.unet.add_adapter(unet_lora_config, "adapter-3") |
|
self.assertDictEqual( |
|
pipe.get_list_adapters(), |
|
{"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]}, |
|
) |
|
|
|
@require_peft_version_greater(peft_version="0.6.2") |
|
def test_simple_inference_with_text_lora_unet_fused_multi(self): |
|
""" |
|
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model |
|
and makes sure it works as expected - with unet and multi-adapter case |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-1") |
|
|
|
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") |
|
pipe.unet.add_adapter(unet_lora_config, "adapter-2") |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") |
|
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
|
|
pipe.set_adapters(["adapter-1", "adapter-2"]) |
|
ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.set_adapters(["adapter-1"]) |
|
ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
pipe.fuse_lora(adapter_names=["adapter-1"]) |
|
|
|
|
|
outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertTrue( |
|
np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3), |
|
"Fused lora should not change the output", |
|
) |
|
|
|
pipe.unfuse_lora() |
|
pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"]) |
|
|
|
|
|
output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue( |
|
np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora should not change the output", |
|
) |
|
|
|
@require_peft_version_greater(peft_version="0.9.0") |
|
def test_simple_inference_with_dora(self): |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls, use_dora=True) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
self.assertTrue(output_no_dora_lora.shape == (1, 64, 64, 3)) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
self.assertFalse( |
|
np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3), |
|
"DoRA lora should change the output", |
|
) |
|
|
|
@unittest.skip("This is failing for now - need to investigate") |
|
def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self): |
|
""" |
|
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
|
and makes sure it works as expected |
|
""" |
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_, _, inputs = self.get_dummy_inputs(with_generator=False) |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") |
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
self.assertTrue( |
|
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" |
|
) |
|
|
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) |
|
|
|
if self.has_two_text_encoders: |
|
pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) |
|
|
|
|
|
_ = pipe(**inputs, generator=torch.manual_seed(0)).images |
|
|
|
def test_modify_padding_mode(self): |
|
def set_pad_mode(network, mode="circular"): |
|
for _, module in network.named_modules(): |
|
if isinstance(module, torch.nn.Conv2d): |
|
module.padding_mode = mode |
|
|
|
for scheduler_cls in [DDIMScheduler, LCMScheduler]: |
|
components, _, _ = self.get_dummy_components(scheduler_cls) |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
_pad_mode = "circular" |
|
set_pad_mode(pipe.vae, _pad_mode) |
|
set_pad_mode(pipe.unet, _pad_mode) |
|
|
|
_, _, inputs = self.get_dummy_inputs() |
|
_ = pipe(**inputs).images |
|
|