diffusers-sdxl-controlnet / tests /pipelines /ledits_pp /test_ledits_pp_stable_diffusion_xl.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
10.6 kB
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
AutoencoderKL,
DPMSolverMultistepScheduler,
LEditsPPPipelineStableDiffusionXL,
UNet2DConditionModel,
)
# from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
enable_full_determinism()
@skip_mps
class LEditsPPPipelineStableDiffusionXLFastTests(unittest.TestCase):
pipeline_class = LEditsPPPipelineStableDiffusionXL
def get_dummy_components(self, skip_first_text_encoder=False, time_cond_proj_dim=None):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
time_cond_proj_dim=time_cond_proj_dim,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64 if not skip_first_text_encoder else 32,
)
scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++", solver_order=2)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=32,
image_size=224,
projection_dim=32,
intermediate_size=37,
num_attention_heads=4,
num_channels=3,
num_hidden_layers=5,
patch_size=14,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
feature_extractor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder if not skip_first_text_encoder else None,
"tokenizer": tokenizer if not skip_first_text_encoder else None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"image_encoder": image_encoder,
"feature_extractor": feature_extractor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"generator": generator,
"editing_prompt": ["wearing glasses", "sunshine"],
"reverse_editing_direction": [False, True],
"edit_guidance_scale": [10.0, 5.0],
}
return inputs
def get_dummy_inversion_inputs(self, device, seed=0):
images = floats_tensor((2, 3, 32, 32), rng=random.Random(0)).cpu().permute(0, 2, 3, 1)
images = 255 * images
image_1 = Image.fromarray(np.uint8(images[0])).convert("RGB")
image_2 = Image.fromarray(np.uint8(images[1])).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": [image_1, image_2],
"source_prompt": "",
"source_guidance_scale": 3.5,
"num_inversion_steps": 20,
"skip": 0.15,
"generator": generator,
}
return inputs
def test_ledits_pp_inversion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = LEditsPPPipelineStableDiffusionXL(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
inputs["image"] = inputs["image"][0]
sd_pipe.invert(**inputs)
assert sd_pipe.init_latents.shape == (
1,
4,
int(32 / sd_pipe.vae_scale_factor),
int(32 / sd_pipe.vae_scale_factor),
)
latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device)
expected_slice = np.array([-0.9084, -0.0367, 0.2940, 0.0839, 0.6890, 0.2651, -0.7103, 2.1090, -0.7821])
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3
def test_ledits_pp_inversion_batch(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = LEditsPPPipelineStableDiffusionXL(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
sd_pipe.invert(**inputs)
assert sd_pipe.init_latents.shape == (
2,
4,
int(32 / sd_pipe.vae_scale_factor),
int(32 / sd_pipe.vae_scale_factor),
)
latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device)
print(latent_slice.flatten())
expected_slice = np.array([0.2528, 0.1458, -0.2166, 0.4565, -0.5656, -1.0286, -0.9961, 0.5933, 1.1172])
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3
latent_slice = sd_pipe.init_latents[1, -1, -3:, -3:].to(device)
print(latent_slice.flatten())
expected_slice = np.array([-0.0796, 2.0583, 0.5500, 0.5358, 0.0282, -0.2803, -1.0470, 0.7024, -0.0072])
print(latent_slice.flatten())
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3
def test_ledits_pp_warmup_steps(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = LEditsPPPipelineStableDiffusionXL(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inversion_inputs = self.get_dummy_inversion_inputs(device)
inversion_inputs["image"] = inversion_inputs["image"][0]
pipe.invert(**inversion_inputs)
inputs = self.get_dummy_inputs(device)
inputs["edit_warmup_steps"] = [0, 5]
pipe(**inputs).images
inputs["edit_warmup_steps"] = [5, 0]
pipe(**inputs).images
inputs["edit_warmup_steps"] = [5, 10]
pipe(**inputs).images
inputs["edit_warmup_steps"] = [10, 5]
pipe(**inputs).images
@slow
@require_torch_gpu
class LEditsPPPipelineStableDiffusionXLSlowTests(unittest.TestCase):
@classmethod
def setUpClass(cls):
raw_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png"
)
raw_image = raw_image.convert("RGB").resize((512, 512))
cls.raw_image = raw_image
def test_ledits_pp_edit(self):
pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", safety_checker=None, add_watermarker=None
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
_ = pipe.invert(image=self.raw_image, generator=generator, num_zero_noise_steps=0)
inputs = {
"generator": generator,
"editing_prompt": ["cat", "dog"],
"reverse_editing_direction": [True, False],
"edit_guidance_scale": [2.0, 4.0],
"edit_threshold": [0.8, 0.8],
}
reconstruction = pipe(**inputs, output_type="np").images[0]
output_slice = reconstruction[150:153, 140:143, -1]
output_slice = output_slice.flatten()
expected_slice = np.array(
[0.56419, 0.44121838, 0.2765603, 0.5708484, 0.42763475, 0.30945742, 0.5387106, 0.4735807, 0.3547244]
)
assert np.abs(output_slice - expected_slice).max() < 1e-3