|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMInverseScheduler, |
|
DDIMScheduler, |
|
DPMSolverMultistepInverseScheduler, |
|
DPMSolverMultistepScheduler, |
|
StableDiffusionDiffEditPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
nightly, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
from ..test_pipelines_common import PipelineFromPipeTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionDiffEditPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionDiffEditPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} |
|
image_params = frozenset( |
|
[] |
|
) |
|
image_latents_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
inverse_scheduler = DDIMInverseScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_zero=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=512, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"inverse_scheduler": inverse_scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device) |
|
latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device) |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "a dog and a newt", |
|
"mask_image": mask, |
|
"image_latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"inpaint_strength": 1.0, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
|
|
return inputs |
|
|
|
def get_dummy_mask_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"image": image, |
|
"source_prompt": "a cat and a frog", |
|
"target_prompt": "a dog and a newt", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"num_maps_per_mask": 2, |
|
"mask_encode_strength": 1.0, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
|
|
return inputs |
|
|
|
def get_dummy_inversion_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"image": image, |
|
"prompt": "a cat and a frog", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"inpaint_strength": 1.0, |
|
"guidance_scale": 6.0, |
|
"decode_latents": True, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_save_load_optional_components(self): |
|
if not hasattr(self.pipeline_class, "_optional_components"): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(output - output_loaded).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_mask(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_mask_inputs(device) |
|
mask = pipe.generate_mask(**inputs) |
|
mask_slice = mask[0, -3:, -3:] |
|
|
|
self.assertEqual(mask.shape, (1, 16, 16)) |
|
expected_slice = np.array([0] * 9) |
|
max_diff = np.abs(mask_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
self.assertEqual(mask[0, -3, -4], 0) |
|
|
|
def test_inversion(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inversion_inputs(device) |
|
image = pipe.invert(**inputs).images |
|
image_slice = image[0, -1, -3:, -3:] |
|
|
|
self.assertEqual(image.shape, (2, 32, 32, 3)) |
|
expected_slice = np.array( |
|
[0.5160, 0.5115, 0.5060, 0.5456, 0.4704, 0.5060, 0.5019, 0.4405, 0.4726], |
|
) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=5e-3) |
|
|
|
def test_inversion_dpm(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} |
|
components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args) |
|
components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args) |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inversion_inputs(device) |
|
image = pipe.invert(**inputs).images |
|
image_slice = image[0, -1, -3:, -3:] |
|
|
|
self.assertEqual(image.shape, (2, 32, 32, 3)) |
|
expected_slice = np.array( |
|
[0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892], |
|
) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
|
|
@require_torch_gpu |
|
@nightly |
|
class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
raw_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" |
|
) |
|
raw_image = raw_image.convert("RGB").resize((256, 256)) |
|
|
|
cls.raw_image = raw_image |
|
|
|
def test_stable_diffusion_diffedit_full(self): |
|
generator = torch.manual_seed(0) |
|
|
|
pipe = StableDiffusionDiffEditPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1-base", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.scheduler.clip_sample = True |
|
|
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
source_prompt = "a bowl of fruit" |
|
target_prompt = "a bowl of pears" |
|
|
|
mask_image = pipe.generate_mask( |
|
image=self.raw_image, |
|
source_prompt=source_prompt, |
|
target_prompt=target_prompt, |
|
generator=generator, |
|
) |
|
|
|
inv_latents = pipe.invert( |
|
prompt=source_prompt, |
|
image=self.raw_image, |
|
inpaint_strength=0.7, |
|
generator=generator, |
|
num_inference_steps=5, |
|
).latents |
|
|
|
image = pipe( |
|
prompt=target_prompt, |
|
mask_image=mask_image, |
|
image_latents=inv_latents, |
|
generator=generator, |
|
negative_prompt=source_prompt, |
|
inpaint_strength=0.7, |
|
num_inference_steps=5, |
|
output_type="np", |
|
).images[0] |
|
|
|
expected_image = ( |
|
np.array( |
|
load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/diffedit/pears.png" |
|
).resize((256, 256)) |
|
) |
|
/ 255 |
|
) |
|
|
|
assert numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten()) < 2e-1 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionDiffEditPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
raw_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" |
|
) |
|
|
|
raw_image = raw_image.convert("RGB").resize((768, 768)) |
|
|
|
cls.raw_image = raw_image |
|
|
|
def test_stable_diffusion_diffedit_dpm(self): |
|
generator = torch.manual_seed(0) |
|
|
|
pipe = StableDiffusionDiffEditPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
source_prompt = "a bowl of fruit" |
|
target_prompt = "a bowl of pears" |
|
|
|
mask_image = pipe.generate_mask( |
|
image=self.raw_image, |
|
source_prompt=source_prompt, |
|
target_prompt=target_prompt, |
|
generator=generator, |
|
) |
|
|
|
inv_latents = pipe.invert( |
|
prompt=source_prompt, |
|
image=self.raw_image, |
|
inpaint_strength=0.7, |
|
generator=generator, |
|
num_inference_steps=25, |
|
).latents |
|
|
|
image = pipe( |
|
prompt=target_prompt, |
|
mask_image=mask_image, |
|
image_latents=inv_latents, |
|
generator=generator, |
|
negative_prompt=source_prompt, |
|
inpaint_strength=0.7, |
|
num_inference_steps=25, |
|
output_type="np", |
|
).images[0] |
|
|
|
expected_image = ( |
|
np.array( |
|
load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/diffedit/pears.png" |
|
).resize((768, 768)) |
|
) |
|
/ 255 |
|
) |
|
assert np.abs((expected_image - image).max()) < 5e-1 |
|
|