diffusers-sdxl-controlnet / tests /schedulers /test_scheduler_edm_dpmsolver_multistep.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
11.2 kB
import tempfile
import unittest
import torch
from diffusers import (
EDMDPMSolverMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class EDMDPMSolverMultistepSchedulerTest(SchedulerCommonTest):
scheduler_classes = (EDMDPMSolverMultistepScheduler,)
forward_default_kwargs = (("num_inference_steps", 25),)
def get_scheduler_config(self, **kwargs):
config = {
"sigma_min": 0.002,
"sigma_max": 80.0,
"sigma_data": 0.5,
"num_train_timesteps": 1000,
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lower_order_final": False,
"euler_at_final": False,
"final_sigmas_type": "sigma_min",
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
output, new_output = sample, sample
for t in range(time_step, time_step + scheduler.config.solver_order + 1):
t = new_scheduler.timesteps[t]
output = scheduler.step(residual, t, output, **kwargs).prev_sample
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
time_step = new_scheduler.timesteps[time_step]
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def full_loop(self, scheduler=None, **config):
if scheduler is None:
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
return sample
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
time_step_0 = scheduler.timesteps[5]
time_step_1 = scheduler.timesteps[6]
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_thresholding(self):
self.check_over_configs(thresholding=False)
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=True,
prediction_type=prediction_type,
sample_max_value=threshold,
algorithm_type="dpmsolver++",
solver_order=order,
solver_type=solver_type,
)
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
# TODO (patil-suraj): Fix this test
@unittest.skip("Skip for now, as it failing currently but works with the actual model")
def test_solver_order_and_type(self):
for algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "v_prediction"]:
if algorithm_type == "sde-dpmsolver++":
if order == 3:
continue
else:
self.check_over_configs(
solver_order=order,
solver_type=solver_type,
prediction_type=prediction_type,
algorithm_type=algorithm_type,
)
sample = self.full_loop(
solver_order=order,
solver_type=solver_type,
prediction_type=prediction_type,
algorithm_type=algorithm_type,
)
assert (
not torch.isnan(sample).any()
), f"Samples have nan numbers, {order}, {solver_type}, {prediction_type}, {algorithm_type}"
def test_lower_order_final(self):
self.check_over_configs(lower_order_final=True)
self.check_over_configs(lower_order_final=False)
def test_euler_at_final(self):
self.check_over_configs(euler_at_final=True)
self.check_over_configs(euler_at_final=False)
def test_inference_steps(self):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)
def test_full_loop_no_noise(self):
sample = self.full_loop()
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 0.0001) < 1e-3
def test_full_loop_with_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
t_start = 5
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
# add noise
noise = self.dummy_noise_deter
timesteps = scheduler.timesteps[t_start * scheduler.order :]
sample = scheduler.add_noise(sample, noise, timesteps[:1])
for i, t in enumerate(timesteps):
residual = model(sample, t)
sample = scheduler.step(residual, t, sample).prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 8.1661) < 1e-2, f" expected result sum 8.1661, but get {result_sum}"
assert abs(result_mean.item() - 0.0106) < 1e-3, f" expected result mean 0.0106, but get {result_mean}"
def test_full_loop_no_noise_thres(self):
sample = self.full_loop(thresholding=True, dynamic_thresholding_ratio=0.87, sample_max_value=0.5)
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 0.0080) < 1e-3
def test_full_loop_with_v_prediction(self):
sample = self.full_loop(prediction_type="v_prediction")
result_mean = torch.mean(torch.abs(sample))
assert abs(result_mean.item() - 0.0092) < 1e-3
def test_duplicated_timesteps(self, **config):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(scheduler.config.num_train_timesteps)
assert len(scheduler.timesteps) == scheduler.num_inference_steps
def test_trained_betas(self):
pass