|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import tempfile |
|
import unittest |
|
from typing import Dict, List, Tuple |
|
|
|
from diffusers import FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxPNDMScheduler |
|
from diffusers.utils import is_flax_available |
|
from diffusers.utils.testing_utils import require_flax |
|
|
|
|
|
if is_flax_available(): |
|
import jax |
|
import jax.numpy as jnp |
|
from jax import random |
|
|
|
jax_device = jax.default_backend() |
|
|
|
|
|
@require_flax |
|
class FlaxSchedulerCommonTest(unittest.TestCase): |
|
scheduler_classes = () |
|
forward_default_kwargs = () |
|
|
|
@property |
|
def dummy_sample(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
height = 8 |
|
width = 8 |
|
|
|
key1, key2 = random.split(random.PRNGKey(0)) |
|
sample = random.uniform(key1, (batch_size, num_channels, height, width)) |
|
|
|
return sample, key2 |
|
|
|
@property |
|
def dummy_sample_deter(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
height = 8 |
|
width = 8 |
|
|
|
num_elems = batch_size * num_channels * height * width |
|
sample = jnp.arange(num_elems) |
|
sample = sample.reshape(num_channels, height, width, batch_size) |
|
sample = sample / num_elems |
|
return jnp.transpose(sample, (3, 0, 1, 2)) |
|
|
|
def get_scheduler_config(self): |
|
raise NotImplementedError |
|
|
|
def dummy_model(self): |
|
def model(sample, t, *args): |
|
return sample * t / (t + 1) |
|
|
|
return model |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, key = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample |
|
new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
kwargs.update(forward_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, key = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample |
|
new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_from_save_pretrained(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, key = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample |
|
new_output = new_scheduler.step(new_state, residual, 1, sample, key, **kwargs).prev_sample |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
sample, key = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output_0 = scheduler.step(state, residual, 0, sample, key, **kwargs).prev_sample |
|
output_1 = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_scheduler_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
return t.at[t != t].set(0) |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
sample, key = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
outputs_dict = scheduler.step(state, residual, 0, sample, key, **kwargs) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
outputs_tuple = scheduler.step(state, residual, 0, sample, key, return_dict=False, **kwargs) |
|
|
|
recursive_check(outputs_tuple[0], outputs_dict.prev_sample) |
|
|
|
def test_deprecated_kwargs(self): |
|
for scheduler_class in self.scheduler_classes: |
|
has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters |
|
has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 |
|
|
|
if has_kwarg_in_model_class and not has_deprecated_kwarg: |
|
raise ValueError( |
|
f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" |
|
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" |
|
" there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" |
|
" [<deprecated_argument>]`" |
|
) |
|
|
|
if not has_kwarg_in_model_class and has_deprecated_kwarg: |
|
raise ValueError( |
|
f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" |
|
" kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" |
|
f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" |
|
" deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" |
|
) |
|
|
|
|
|
@require_flax |
|
class FlaxDDPMSchedulerTest(FlaxSchedulerCommonTest): |
|
scheduler_classes = (FlaxDDPMScheduler,) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
"variance_type": "fixed_small", |
|
"clip_sample": True, |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def test_timesteps(self): |
|
for timesteps in [1, 5, 100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_betas(self): |
|
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): |
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end) |
|
|
|
def test_schedules(self): |
|
for schedule in ["linear", "squaredcos_cap_v2"]: |
|
self.check_over_configs(beta_schedule=schedule) |
|
|
|
def test_variance_type(self): |
|
for variance in ["fixed_small", "fixed_large", "other"]: |
|
self.check_over_configs(variance_type=variance) |
|
|
|
def test_clip_sample(self): |
|
for clip_sample in [True, False]: |
|
self.check_over_configs(clip_sample=clip_sample) |
|
|
|
def test_time_indices(self): |
|
for t in [0, 500, 999]: |
|
self.check_over_forward(time_step=t) |
|
|
|
def test_variance(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0) - 0.0)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 487) - 0.00979)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 999) - 0.02)) < 1e-5 |
|
|
|
def test_full_loop_no_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
num_trained_timesteps = len(scheduler) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
key1, key2 = random.split(random.PRNGKey(0)) |
|
|
|
for t in reversed(range(num_trained_timesteps)): |
|
|
|
residual = model(sample, t) |
|
|
|
|
|
output = scheduler.step(state, residual, t, sample, key1) |
|
pred_prev_sample = output.prev_sample |
|
state = output.state |
|
key1, key2 = random.split(key2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
if jax_device == "tpu": |
|
assert abs(result_sum - 255.0714) < 1e-2 |
|
assert abs(result_mean - 0.332124) < 1e-3 |
|
else: |
|
assert abs(result_sum - 255.1113) < 1e-1 |
|
assert abs(result_mean - 0.332176) < 1e-3 |
|
|
|
|
|
@require_flax |
|
class FlaxDDIMSchedulerTest(FlaxSchedulerCommonTest): |
|
scheduler_classes = (FlaxDDIMScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 50),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def full_loop(self, **config): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
key1, key2 = random.split(random.PRNGKey(0)) |
|
|
|
num_inference_steps = 10 |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
|
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
|
|
for t in state.timesteps: |
|
residual = model(sample, t) |
|
output = scheduler.step(state, residual, t, sample) |
|
sample = output.prev_sample |
|
state = output.state |
|
key1, key2 = random.split(key2) |
|
|
|
return sample |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_from_save_pretrained(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step(new_state, residual, 1, sample, **kwargs).prev_sample |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
kwargs.update(forward_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_scheduler_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
return t.at[t != t].set(0) |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs) |
|
|
|
recursive_check(outputs_tuple[0], outputs_dict.prev_sample) |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
output_0 = scheduler.step(state, residual, 0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_timesteps(self): |
|
for timesteps in [100, 500, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_steps_offset(self): |
|
for steps_offset in [0, 1]: |
|
self.check_over_configs(steps_offset=steps_offset) |
|
|
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(steps_offset=1) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
state = scheduler.set_timesteps(state, 5) |
|
assert jnp.equal(state.timesteps, jnp.array([801, 601, 401, 201, 1])).all() |
|
|
|
def test_betas(self): |
|
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): |
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end) |
|
|
|
def test_schedules(self): |
|
for schedule in ["linear", "squaredcos_cap_v2"]: |
|
self.check_over_configs(beta_schedule=schedule) |
|
|
|
def test_time_indices(self): |
|
for t in [1, 10, 49]: |
|
self.check_over_forward(time_step=t) |
|
|
|
def test_inference_steps(self): |
|
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): |
|
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) |
|
|
|
def test_variance(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0, 0) - 0.0)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 420, 400) - 0.14771)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 980, 960) - 0.32460)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0, 0) - 0.0)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 487, 486) - 0.00979)) < 1e-5 |
|
assert jnp.sum(jnp.abs(scheduler._get_variance(state, 999, 998) - 0.02)) < 1e-5 |
|
|
|
def test_full_loop_no_noise(self): |
|
sample = self.full_loop() |
|
|
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
assert abs(result_sum - 172.0067) < 1e-2 |
|
assert abs(result_mean - 0.223967) < 1e-3 |
|
|
|
def test_full_loop_with_set_alpha_to_one(self): |
|
|
|
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) |
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
if jax_device == "tpu": |
|
assert abs(result_sum - 149.8409) < 1e-2 |
|
assert abs(result_mean - 0.1951) < 1e-3 |
|
else: |
|
assert abs(result_sum - 149.8295) < 1e-2 |
|
assert abs(result_mean - 0.1951) < 1e-3 |
|
|
|
def test_full_loop_with_no_set_alpha_to_one(self): |
|
|
|
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) |
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
if jax_device == "tpu": |
|
pass |
|
|
|
|
|
|
|
else: |
|
assert abs(result_sum - 149.0784) < 1e-2 |
|
assert abs(result_mean - 0.1941) < 1e-3 |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "sample", "v_prediction"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
|
|
@require_flax |
|
class FlaxPNDMSchedulerTest(FlaxSchedulerCommonTest): |
|
scheduler_classes = (FlaxPNDMScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 50),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
|
|
state = state.replace(ets=dummy_past_residuals[:]) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape) |
|
|
|
new_state = new_state.replace(ets=dummy_past_residuals[:]) |
|
|
|
(prev_sample, state) = scheduler.step_prk(state, residual, time_step, sample, **kwargs) |
|
(new_prev_sample, new_state) = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs) |
|
|
|
assert jnp.sum(jnp.abs(prev_sample - new_prev_sample)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs) |
|
new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs) |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_from_save_pretrained(self): |
|
pass |
|
|
|
def test_scheduler_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
return t.at[t != t].set(0) |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs) |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs) |
|
|
|
recursive_check(outputs_tuple[0], outputs_dict.prev_sample) |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
|
|
|
|
scheduler.ets = dummy_past_residuals[:] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape) |
|
|
|
|
|
new_state.replace(ets=dummy_past_residuals[:]) |
|
|
|
output, state = scheduler.step_prk(state, residual, time_step, sample, **kwargs) |
|
new_output, new_state = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs) |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs) |
|
new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs) |
|
|
|
assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def full_loop(self, **config): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
num_inference_steps = 10 |
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
|
|
for i, t in enumerate(state.prk_timesteps): |
|
residual = model(sample, t) |
|
sample, state = scheduler.step_prk(state, residual, t, sample) |
|
|
|
for i, t in enumerate(state.plms_timesteps): |
|
residual = model(sample, t) |
|
sample, state = scheduler.step_plms(state, residual, t, sample) |
|
|
|
return sample |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) |
|
state = state.replace(ets=dummy_past_residuals[:]) |
|
|
|
output_0, state = scheduler.step_prk(state, residual, 0, sample, **kwargs) |
|
output_1, state = scheduler.step_prk(state, residual, 1, sample, **kwargs) |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
output_0, state = scheduler.step_plms(state, residual, 0, sample, **kwargs) |
|
output_1, state = scheduler.step_plms(state, residual, 1, sample, **kwargs) |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_timesteps(self): |
|
for timesteps in [100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_steps_offset(self): |
|
for steps_offset in [0, 1]: |
|
self.check_over_configs(steps_offset=steps_offset) |
|
|
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(steps_offset=1) |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
state = scheduler.set_timesteps(state, 10, shape=()) |
|
assert jnp.equal( |
|
state.timesteps, |
|
jnp.array([901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]), |
|
).all() |
|
|
|
def test_betas(self): |
|
for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): |
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end) |
|
|
|
def test_schedules(self): |
|
for schedule in ["linear", "squaredcos_cap_v2"]: |
|
self.check_over_configs(beta_schedule=schedule) |
|
|
|
def test_time_indices(self): |
|
for t in [1, 5, 10]: |
|
self.check_over_forward(time_step=t) |
|
|
|
def test_inference_steps(self): |
|
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): |
|
self.check_over_forward(num_inference_steps=num_inference_steps) |
|
|
|
def test_pow_of_3_inference_steps(self): |
|
|
|
num_inference_steps = 27 |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample, _ = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) |
|
|
|
|
|
for i, t in enumerate(state.prk_timesteps[:2]): |
|
sample, state = scheduler.step_prk(state, residual, t, sample) |
|
|
|
def test_inference_plms_no_past_residuals(self): |
|
with self.assertRaises(ValueError): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
state = scheduler.create_state() |
|
|
|
scheduler.step_plms(state, self.dummy_sample, 1, self.dummy_sample).prev_sample |
|
|
|
def test_full_loop_no_noise(self): |
|
sample = self.full_loop() |
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
if jax_device == "tpu": |
|
assert abs(result_sum - 198.1275) < 1e-2 |
|
assert abs(result_mean - 0.2580) < 1e-3 |
|
else: |
|
assert abs(result_sum - 198.1318) < 1e-2 |
|
assert abs(result_mean - 0.2580) < 1e-3 |
|
|
|
def test_full_loop_with_set_alpha_to_one(self): |
|
|
|
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) |
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
if jax_device == "tpu": |
|
assert abs(result_sum - 186.83226) < 1e-2 |
|
assert abs(result_mean - 0.24327) < 1e-3 |
|
else: |
|
assert abs(result_sum - 186.9466) < 1e-2 |
|
assert abs(result_mean - 0.24342) < 1e-3 |
|
|
|
def test_full_loop_with_no_set_alpha_to_one(self): |
|
|
|
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) |
|
result_sum = jnp.sum(jnp.abs(sample)) |
|
result_mean = jnp.mean(jnp.abs(sample)) |
|
|
|
if jax_device == "tpu": |
|
assert abs(result_sum - 186.83226) < 1e-2 |
|
assert abs(result_mean - 0.24327) < 1e-3 |
|
else: |
|
assert abs(result_sum - 186.9482) < 1e-2 |
|
assert abs(result_mean - 0.2434) < 1e-3 |
|
|