|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import functools |
|
import gc |
|
import itertools |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
from typing import List, Union |
|
|
|
import accelerate |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import torchvision.transforms.functional as TF |
|
import transformers |
|
import webdataset as wds |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from braceexpand import braceexpand |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from torch.utils.data import default_collate |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
from webdataset.tariterators import ( |
|
base_plus_ext, |
|
tar_file_expander, |
|
url_opener, |
|
valid_sample, |
|
) |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
LCMScheduler, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import resolve_interpolation_mode |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
MAX_SEQ_LENGTH = 77 |
|
|
|
|
|
WDS_JSON_WIDTH = "width" |
|
WDS_JSON_HEIGHT = "height" |
|
MIN_SIZE = 700 |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def filter_keys(key_set): |
|
def _f(dictionary): |
|
return {k: v for k, v in dictionary.items() if k in key_set} |
|
|
|
return _f |
|
|
|
|
|
def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): |
|
"""Return function over iterator that groups key, value pairs into samples. |
|
|
|
:param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to |
|
lower case (Default value = True) |
|
""" |
|
current_sample = None |
|
for filesample in data: |
|
assert isinstance(filesample, dict) |
|
fname, value = filesample["fname"], filesample["data"] |
|
prefix, suffix = keys(fname) |
|
if prefix is None: |
|
continue |
|
if lcase: |
|
suffix = suffix.lower() |
|
|
|
|
|
|
|
if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: |
|
if valid_sample(current_sample): |
|
yield current_sample |
|
current_sample = {"__key__": prefix, "__url__": filesample["__url__"]} |
|
if suffixes is None or suffix in suffixes: |
|
current_sample[suffix] = value |
|
if valid_sample(current_sample): |
|
yield current_sample |
|
|
|
|
|
def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue): |
|
|
|
streams = url_opener(src, handler=handler) |
|
files = tar_file_expander(streams, handler=handler) |
|
samples = group_by_keys_nothrow(files, handler=handler) |
|
return samples |
|
|
|
|
|
class WebdatasetFilter: |
|
def __init__(self, min_size=1024, max_pwatermark=0.5): |
|
self.min_size = min_size |
|
self.max_pwatermark = max_pwatermark |
|
|
|
def __call__(self, x): |
|
try: |
|
if "json" in x: |
|
x_json = json.loads(x["json"]) |
|
filter_size = (x_json.get(WDS_JSON_WIDTH, 0.0) or 0.0) >= self.min_size and x_json.get( |
|
WDS_JSON_HEIGHT, 0 |
|
) >= self.min_size |
|
filter_watermark = (x_json.get("pwatermark", 0.0) or 0.0) <= self.max_pwatermark |
|
return filter_size and filter_watermark |
|
else: |
|
return False |
|
except Exception: |
|
return False |
|
|
|
|
|
class SDXLText2ImageDataset: |
|
def __init__( |
|
self, |
|
train_shards_path_or_url: Union[str, List[str]], |
|
num_train_examples: int, |
|
per_gpu_batch_size: int, |
|
global_batch_size: int, |
|
num_workers: int, |
|
resolution: int = 1024, |
|
interpolation_type: str = "bilinear", |
|
shuffle_buffer_size: int = 1000, |
|
pin_memory: bool = False, |
|
persistent_workers: bool = False, |
|
use_fix_crop_and_size: bool = False, |
|
): |
|
if not isinstance(train_shards_path_or_url, str): |
|
train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url] |
|
|
|
train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url)) |
|
|
|
def get_orig_size(json): |
|
if use_fix_crop_and_size: |
|
return (resolution, resolution) |
|
else: |
|
return (int(json.get(WDS_JSON_WIDTH, 0.0)), int(json.get(WDS_JSON_HEIGHT, 0.0))) |
|
|
|
interpolation_mode = resolve_interpolation_mode(interpolation_type) |
|
|
|
def transform(example): |
|
|
|
image = example["image"] |
|
image = TF.resize(image, resolution, interpolation=interpolation_mode) |
|
|
|
|
|
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) |
|
image = TF.crop(image, c_top, c_left, resolution, resolution) |
|
image = TF.to_tensor(image) |
|
image = TF.normalize(image, [0.5], [0.5]) |
|
|
|
example["image"] = image |
|
example["crop_coords"] = (c_top, c_left) if not use_fix_crop_and_size else (0, 0) |
|
return example |
|
|
|
processing_pipeline = [ |
|
wds.decode("pil", handler=wds.ignore_and_continue), |
|
wds.rename( |
|
image="jpg;png;jpeg;webp", text="text;txt;caption", orig_size="json", handler=wds.warn_and_continue |
|
), |
|
wds.map(filter_keys({"image", "text", "orig_size"})), |
|
wds.map_dict(orig_size=get_orig_size), |
|
wds.map(transform), |
|
wds.to_tuple("image", "text", "orig_size", "crop_coords"), |
|
] |
|
|
|
|
|
pipeline = [ |
|
wds.ResampledShards(train_shards_path_or_url), |
|
tarfile_to_samples_nothrow, |
|
wds.select(WebdatasetFilter(min_size=MIN_SIZE)), |
|
wds.shuffle(shuffle_buffer_size), |
|
*processing_pipeline, |
|
wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), |
|
] |
|
|
|
num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers)) |
|
num_batches = num_worker_batches * num_workers |
|
num_samples = num_batches * global_batch_size |
|
|
|
|
|
self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches) |
|
self._train_dataloader = wds.WebLoader( |
|
self._train_dataset, |
|
batch_size=None, |
|
shuffle=False, |
|
num_workers=num_workers, |
|
pin_memory=pin_memory, |
|
persistent_workers=persistent_workers, |
|
) |
|
|
|
self._train_dataloader.num_batches = num_batches |
|
self._train_dataloader.num_samples = num_samples |
|
|
|
@property |
|
def train_dataset(self): |
|
return self._train_dataset |
|
|
|
@property |
|
def train_dataloader(self): |
|
return self._train_dataloader |
|
|
|
|
|
def log_validation(vae, unet, args, accelerator, weight_dtype, step, name="target"): |
|
logger.info("Running validation... ") |
|
|
|
unet = accelerator.unwrap_model(unet) |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_teacher_model, |
|
vae=vae, |
|
unet=unet, |
|
scheduler=LCMScheduler.from_pretrained(args.pretrained_teacher_model, subfolder="scheduler"), |
|
revision=args.revision, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
if args.seed is None: |
|
generator = None |
|
else: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
validation_prompts = [ |
|
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", |
|
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", |
|
] |
|
|
|
image_logs = [] |
|
|
|
for _, prompt in enumerate(validation_prompts): |
|
images = [] |
|
if torch.backends.mps.is_available(): |
|
autocast_ctx = nullcontext() |
|
else: |
|
autocast_ctx = torch.autocast(accelerator.device.type) |
|
|
|
with autocast_ctx: |
|
images = pipeline( |
|
prompt=prompt, |
|
num_inference_steps=4, |
|
num_images_per_prompt=4, |
|
generator=generator, |
|
).images |
|
image_logs.append({"validation_prompt": prompt, "images": images}) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
formatted_images = [] |
|
for image in images: |
|
formatted_images.append(np.asarray(image)) |
|
|
|
formatted_images = np.stack(formatted_images) |
|
|
|
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") |
|
elif tracker.name == "wandb": |
|
formatted_images = [] |
|
|
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
for image in images: |
|
image = wandb.Image(image, caption=validation_prompt) |
|
formatted_images.append(image) |
|
|
|
tracker.log({f"validation/{name}": formatted_images}) |
|
else: |
|
logger.warning(f"image logging not implemented for {tracker.name}") |
|
|
|
del pipeline |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
return image_logs |
|
|
|
|
|
def append_dims(x, target_dims): |
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" |
|
dims_to_append = target_dims - x.ndim |
|
if dims_to_append < 0: |
|
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") |
|
return x[(...,) + (None,) * dims_to_append] |
|
|
|
|
|
|
|
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0): |
|
scaled_timestep = timestep_scaling * timestep |
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) |
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 |
|
return c_skip, c_out |
|
|
|
|
|
|
|
def get_predicted_original_sample(model_output, timesteps, sample, prediction_type, alphas, sigmas): |
|
alphas = extract_into_tensor(alphas, timesteps, sample.shape) |
|
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) |
|
if prediction_type == "epsilon": |
|
pred_x_0 = (sample - sigmas * model_output) / alphas |
|
elif prediction_type == "sample": |
|
pred_x_0 = model_output |
|
elif prediction_type == "v_prediction": |
|
pred_x_0 = alphas * sample - sigmas * model_output |
|
else: |
|
raise ValueError( |
|
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`" |
|
f" are supported." |
|
) |
|
|
|
return pred_x_0 |
|
|
|
|
|
|
|
def get_predicted_noise(model_output, timesteps, sample, prediction_type, alphas, sigmas): |
|
alphas = extract_into_tensor(alphas, timesteps, sample.shape) |
|
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) |
|
if prediction_type == "epsilon": |
|
pred_epsilon = model_output |
|
elif prediction_type == "sample": |
|
pred_epsilon = (sample - alphas * model_output) / sigmas |
|
elif prediction_type == "v_prediction": |
|
pred_epsilon = alphas * model_output + sigmas * sample |
|
else: |
|
raise ValueError( |
|
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`" |
|
f" are supported." |
|
) |
|
|
|
return pred_epsilon |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
@torch.no_grad() |
|
def update_ema(target_params, source_params, rate=0.99): |
|
""" |
|
Update target parameters to be closer to those of source parameters using |
|
an exponential moving average. |
|
|
|
:param target_params: the target parameter sequence. |
|
:param source_params: the source parameter sequence. |
|
:param rate: the EMA rate (closer to 1 means slower). |
|
""" |
|
for targ, src in zip(target_params, source_params): |
|
targ.detach().mul_(rate).add_(src, alpha=1 - rate) |
|
|
|
|
|
|
|
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
|
|
class DDIMSolver: |
|
def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50): |
|
|
|
step_ratio = timesteps // ddim_timesteps |
|
|
|
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1 |
|
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps] |
|
self.ddim_alpha_cumprods_prev = np.asarray( |
|
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist() |
|
) |
|
|
|
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long() |
|
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods) |
|
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev) |
|
|
|
def to(self, device): |
|
self.ddim_timesteps = self.ddim_timesteps.to(device) |
|
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device) |
|
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device) |
|
return self |
|
|
|
def ddim_step(self, pred_x0, pred_noise, timestep_index): |
|
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape) |
|
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise |
|
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt |
|
return x_prev |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
|
|
parser.add_argument( |
|
"--pretrained_teacher_model", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--teacher_revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained LDM model identifier from huggingface.co/models.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="lcm-xl-distilled", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
|
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_shards_path_or_url", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=1024, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--interpolation_type", |
|
type=str, |
|
default="bilinear", |
|
help=( |
|
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`," |
|
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--use_fix_crop_and_size", |
|
action="store_true", |
|
help="Whether or not to use the fixed crop and size for the teacher model.", |
|
default=False, |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
|
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
|
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
|
|
parser.add_argument( |
|
"--proportion_empty_prompts", |
|
type=float, |
|
default=0, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
|
|
parser.add_argument( |
|
"--w_min", |
|
type=float, |
|
default=3.0, |
|
required=False, |
|
help=( |
|
"The minimum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG" |
|
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as" |
|
" compared to the original paper." |
|
), |
|
) |
|
parser.add_argument( |
|
"--w_max", |
|
type=float, |
|
default=15.0, |
|
required=False, |
|
help=( |
|
"The maximum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG" |
|
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as" |
|
" compared to the original paper." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_ddim_timesteps", |
|
type=int, |
|
default=50, |
|
help="The number of timesteps to use for DDIM sampling.", |
|
) |
|
parser.add_argument( |
|
"--loss_type", |
|
type=str, |
|
default="l2", |
|
choices=["l2", "huber"], |
|
help="The type of loss to use for the LCD loss.", |
|
) |
|
parser.add_argument( |
|
"--huber_c", |
|
type=float, |
|
default=0.001, |
|
help="The huber loss parameter. Only used if `--loss_type=huber`.", |
|
) |
|
parser.add_argument( |
|
"--unet_time_cond_proj_dim", |
|
type=int, |
|
default=256, |
|
help=( |
|
"The dimension of the guidance scale embedding in the U-Net, which will be used if the teacher U-Net" |
|
" does not have `time_cond_proj_dim` set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--vae_encode_batch_size", |
|
type=int, |
|
default=8, |
|
required=False, |
|
help=( |
|
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE." |
|
" Encoding or decoding the whole batch at once may run into OOM issues." |
|
), |
|
) |
|
parser.add_argument( |
|
"--timestep_scaling_factor", |
|
type=float, |
|
default=10.0, |
|
help=( |
|
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The" |
|
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically" |
|
" suffice." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--ema_decay", |
|
type=float, |
|
default=0.95, |
|
required=False, |
|
help="The exponential moving average (EMA) rate or decay factor.", |
|
) |
|
|
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--cast_teacher_unet", |
|
action="store_true", |
|
help="Whether to cast the teacher U-Net to the precision specified by `--mixed_precision`.", |
|
) |
|
|
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=200, |
|
help="Run validation every X steps.", |
|
) |
|
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
|
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="text2image-fine-tune", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: |
|
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") |
|
|
|
return args |
|
|
|
|
|
|
|
def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True): |
|
prompt_embeds_list = [] |
|
|
|
captions = [] |
|
for caption in prompt_batch: |
|
if random.random() < proportion_empty_prompts: |
|
captions.append("") |
|
elif isinstance(caption, str): |
|
captions.append(caption) |
|
elif isinstance(caption, (list, np.ndarray)): |
|
|
|
captions.append(random.choice(caption) if is_train else caption[0]) |
|
|
|
with torch.no_grad(): |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
captions, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
split_batches=True, |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, |
|
exist_ok=True, |
|
token=args.hub_token, |
|
private=True, |
|
).repo_id |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained( |
|
args.pretrained_teacher_model, subfolder="scheduler", revision=args.teacher_revision |
|
) |
|
|
|
|
|
alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod) |
|
sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod) |
|
|
|
solver = DDIMSolver( |
|
noise_scheduler.alphas_cumprod.numpy(), |
|
timesteps=noise_scheduler.config.num_train_timesteps, |
|
ddim_timesteps=args.num_ddim_timesteps, |
|
) |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_teacher_model, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_teacher_model, subfolder="tokenizer_2", revision=args.teacher_revision, use_fast=False |
|
) |
|
|
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_teacher_model, args.teacher_revision |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_teacher_model, args.teacher_revision, subfolder="text_encoder_2" |
|
) |
|
|
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_teacher_model, subfolder="text_encoder", revision=args.teacher_revision |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_teacher_model, subfolder="text_encoder_2", revision=args.teacher_revision |
|
) |
|
|
|
|
|
vae_path = ( |
|
args.pretrained_teacher_model |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.teacher_revision, |
|
) |
|
|
|
|
|
teacher_unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_teacher_model, subfolder="unet", revision=args.teacher_revision |
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
teacher_unet.requires_grad_(False) |
|
|
|
|
|
|
|
time_cond_proj_dim = ( |
|
teacher_unet.config.time_cond_proj_dim |
|
if teacher_unet.config.time_cond_proj_dim is not None |
|
else args.unet_time_cond_proj_dim |
|
) |
|
unet = UNet2DConditionModel.from_config(teacher_unet.config, time_cond_proj_dim=time_cond_proj_dim) |
|
|
|
unet.load_state_dict(teacher_unet.state_dict(), strict=False) |
|
unet.train() |
|
|
|
|
|
|
|
target_unet = UNet2DConditionModel.from_config(unet.config) |
|
target_unet.load_state_dict(unet.state_dict()) |
|
target_unet.train() |
|
target_unet.requires_grad_(False) |
|
|
|
|
|
low_precision_error_string = ( |
|
" Please make sure to always have all model weights in full float32 precision when starting training - even if" |
|
" doing mixed precision training, copy of the weights should still be float32." |
|
) |
|
|
|
if accelerator.unwrap_model(unet).dtype != torch.float32: |
|
raise ValueError( |
|
f"Controlnet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}" |
|
) |
|
|
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
vae.to(accelerator.device) |
|
if args.pretrained_vae_model_name_or_path is not None: |
|
vae.to(dtype=weight_dtype) |
|
text_encoder_one.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_two.to(accelerator.device, dtype=weight_dtype) |
|
target_unet.to(accelerator.device) |
|
|
|
teacher_unet.to(accelerator.device) |
|
if args.cast_teacher_unet: |
|
teacher_unet.to(dtype=weight_dtype) |
|
|
|
|
|
alpha_schedule = alpha_schedule.to(accelerator.device) |
|
sigma_schedule = sigma_schedule.to(accelerator.device) |
|
|
|
solver = solver.to(accelerator.device) |
|
|
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
target_unet.save_pretrained(os.path.join(output_dir, "unet_target")) |
|
|
|
for i, model in enumerate(models): |
|
model.save_pretrained(os.path.join(output_dir, "unet")) |
|
|
|
|
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
load_model = UNet2DConditionModel.from_pretrained(os.path.join(input_dir, "unet_target")) |
|
target_unet.load_state_dict(load_model.state_dict()) |
|
target_unet.to(accelerator.device) |
|
del load_model |
|
|
|
for i in range(len(models)): |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
teacher_unet.enable_xformers_memory_efficient_attention() |
|
target_unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
optimizer = optimizer_class( |
|
unet.parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
def compute_embeddings( |
|
prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True |
|
): |
|
target_size = (args.resolution, args.resolution) |
|
original_sizes = list(map(list, zip(*original_sizes))) |
|
crops_coords_top_left = list(map(list, zip(*crop_coords))) |
|
|
|
original_sizes = torch.tensor(original_sizes, dtype=torch.long) |
|
crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long) |
|
|
|
prompt_embeds, pooled_prompt_embeds = encode_prompt( |
|
prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train |
|
) |
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
|
|
add_time_ids = list(target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
add_time_ids = add_time_ids.repeat(len(prompt_batch), 1) |
|
add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype) |
|
|
|
prompt_embeds = prompt_embeds.to(accelerator.device) |
|
add_text_embeds = add_text_embeds.to(accelerator.device) |
|
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} |
|
|
|
dataset = SDXLText2ImageDataset( |
|
train_shards_path_or_url=args.train_shards_path_or_url, |
|
num_train_examples=args.max_train_samples, |
|
per_gpu_batch_size=args.train_batch_size, |
|
global_batch_size=args.train_batch_size * accelerator.num_processes, |
|
num_workers=args.dataloader_num_workers, |
|
resolution=args.resolution, |
|
interpolation_type=args.interpolation_type, |
|
shuffle_buffer_size=1000, |
|
pin_memory=True, |
|
persistent_workers=True, |
|
use_fix_crop_and_size=args.use_fix_crop_and_size, |
|
) |
|
train_dataloader = dataset.train_dataloader |
|
|
|
|
|
|
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
|
|
compute_embeddings_fn = functools.partial( |
|
compute_embeddings, |
|
proportion_empty_prompts=0, |
|
text_encoders=text_encoders, |
|
tokenizers=tokenizers, |
|
) |
|
|
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps, |
|
num_training_steps=args.max_train_steps, |
|
) |
|
|
|
|
|
|
|
unet, optimizer, lr_scheduler = accelerator.prepare(unet, optimizer, lr_scheduler) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
|
|
uncond_prompt_embeds = torch.zeros(args.train_batch_size, 77, 2048).to(accelerator.device) |
|
uncond_pooled_prompt_embeds = torch.zeros(args.train_batch_size, 1280).to(accelerator.device) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num batches each epoch = {train_dataloader.num_batches}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
image, text, orig_size, crop_coords = batch |
|
|
|
image = image.to(accelerator.device, non_blocking=True) |
|
encoded_text = compute_embeddings_fn(text, orig_size, crop_coords) |
|
|
|
if args.pretrained_vae_model_name_or_path is not None: |
|
pixel_values = image.to(dtype=weight_dtype) |
|
if vae.dtype != weight_dtype: |
|
vae.to(dtype=weight_dtype) |
|
else: |
|
pixel_values = image |
|
|
|
|
|
latents = [] |
|
for i in range(0, pixel_values.shape[0], args.vae_encode_batch_size): |
|
latents.append(vae.encode(pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample()) |
|
latents = torch.cat(latents, dim=0) |
|
|
|
latents = latents * vae.config.scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
latents = latents.to(weight_dtype) |
|
bsz = latents.shape[0] |
|
|
|
|
|
|
|
topk = noise_scheduler.config.num_train_timesteps // args.num_ddim_timesteps |
|
index = torch.randint(0, args.num_ddim_timesteps, (bsz,), device=latents.device).long() |
|
start_timesteps = solver.ddim_timesteps[index] |
|
timesteps = start_timesteps - topk |
|
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps) |
|
|
|
|
|
c_skip_start, c_out_start = scalings_for_boundary_conditions( |
|
start_timesteps, timestep_scaling=args.timestep_scaling_factor |
|
) |
|
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]] |
|
c_skip, c_out = scalings_for_boundary_conditions( |
|
timesteps, timestep_scaling=args.timestep_scaling_factor |
|
) |
|
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]] |
|
|
|
|
|
|
|
noise = torch.randn_like(latents) |
|
noisy_model_input = noise_scheduler.add_noise(latents, noise, start_timesteps) |
|
|
|
|
|
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min |
|
w_embedding = guidance_scale_embedding(w, embedding_dim=time_cond_proj_dim) |
|
w = w.reshape(bsz, 1, 1, 1) |
|
|
|
w = w.to(device=latents.device, dtype=latents.dtype) |
|
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) |
|
|
|
|
|
prompt_embeds = encoded_text.pop("prompt_embeds") |
|
|
|
|
|
noise_pred = unet( |
|
noisy_model_input, |
|
start_timesteps, |
|
timestep_cond=w_embedding, |
|
encoder_hidden_states=prompt_embeds.float(), |
|
added_cond_kwargs=encoded_text, |
|
).sample |
|
|
|
pred_x_0 = get_predicted_original_sample( |
|
noise_pred, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
|
|
model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0 |
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
if torch.backends.mps.is_available(): |
|
autocast_ctx = nullcontext() |
|
else: |
|
autocast_ctx = torch.autocast(accelerator.device.type) |
|
|
|
with autocast_ctx: |
|
|
|
cond_teacher_output = teacher_unet( |
|
noisy_model_input.to(weight_dtype), |
|
start_timesteps, |
|
encoder_hidden_states=prompt_embeds.to(weight_dtype), |
|
added_cond_kwargs={k: v.to(weight_dtype) for k, v in encoded_text.items()}, |
|
).sample |
|
cond_pred_x0 = get_predicted_original_sample( |
|
cond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
cond_pred_noise = get_predicted_noise( |
|
cond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
|
|
|
|
uncond_added_conditions = copy.deepcopy(encoded_text) |
|
uncond_added_conditions["text_embeds"] = uncond_pooled_prompt_embeds |
|
uncond_teacher_output = teacher_unet( |
|
noisy_model_input.to(weight_dtype), |
|
start_timesteps, |
|
encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype), |
|
added_cond_kwargs={k: v.to(weight_dtype) for k, v in uncond_added_conditions.items()}, |
|
).sample |
|
uncond_pred_x0 = get_predicted_original_sample( |
|
uncond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
uncond_pred_noise = get_predicted_noise( |
|
uncond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
|
|
|
|
|
|
pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0) |
|
pred_noise = cond_pred_noise + w * (cond_pred_noise - uncond_pred_noise) |
|
|
|
|
|
|
|
x_prev = solver.ddim_step(pred_x0, pred_noise, index) |
|
|
|
|
|
with torch.no_grad(): |
|
if torch.backends.mps.is_available(): |
|
autocast_ctx = nullcontext() |
|
else: |
|
autocast_ctx = torch.autocast(accelerator.device.type, dtype=weight_dtype) |
|
|
|
with autocast_ctx: |
|
target_noise_pred = target_unet( |
|
x_prev.float(), |
|
timesteps, |
|
timestep_cond=w_embedding, |
|
encoder_hidden_states=prompt_embeds.float(), |
|
added_cond_kwargs=encoded_text, |
|
).sample |
|
pred_x_0 = get_predicted_original_sample( |
|
target_noise_pred, |
|
timesteps, |
|
x_prev, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
target = c_skip * x_prev + c_out * pred_x_0 |
|
|
|
|
|
if args.loss_type == "l2": |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
elif args.loss_type == "huber": |
|
loss = torch.mean( |
|
torch.sqrt((model_pred.float() - target.float()) ** 2 + args.huber_c**2) - args.huber_c |
|
) |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
|
update_ema(target_unet.parameters(), unet.parameters(), args.ema_decay) |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if global_step % args.validation_steps == 0: |
|
log_validation(vae, target_unet, args, accelerator, weight_dtype, global_step, "target") |
|
log_validation(vae, unet, args, accelerator, weight_dtype, global_step, "online") |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
unet.save_pretrained(os.path.join(args.output_dir, "unet")) |
|
|
|
target_unet = accelerator.unwrap_model(target_unet) |
|
target_unet.save_pretrained(os.path.join(args.output_dir, "unet_target")) |
|
|
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|