|
import argparse |
|
import logging |
|
import math |
|
import os |
|
from pathlib import Path |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
from flax import jax_utils |
|
from flax.training import train_state |
|
from flax.training.common_utils import shard |
|
from huggingface_hub import create_repo, upload_folder |
|
from huggingface_hub.utils import insecure_hashlib |
|
from jax.experimental.compilation_cache import compilation_cache as cc |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed |
|
|
|
from diffusers import ( |
|
FlaxAutoencoderKL, |
|
FlaxDDPMScheduler, |
|
FlaxPNDMScheduler, |
|
FlaxStableDiffusionPipeline, |
|
FlaxUNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker |
|
from diffusers.utils import check_min_version |
|
|
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
|
|
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache")) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained vae or vae identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If there are not enough images already present in" |
|
" class_data_dir, additional images will be sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="text-inversion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--save_steps", type=int, default=None, help="Save a checkpoint every X steps.") |
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.instance_data_dir is None: |
|
raise ValueError("You must specify a train data directory.") |
|
|
|
if args.with_prior_preservation: |
|
if args.class_data_dir is None: |
|
raise ValueError("You must specify a data directory for class images.") |
|
if args.class_prompt is None: |
|
raise ValueError("You must specify prompt for class images.") |
|
|
|
return args |
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
instance_prompt, |
|
tokenizer, |
|
class_data_root=None, |
|
class_prompt=None, |
|
class_num=None, |
|
size=512, |
|
center_crop=False, |
|
): |
|
self.size = size |
|
self.center_crop = center_crop |
|
self.tokenizer = tokenizer |
|
|
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir()) |
|
self.num_instance_images = len(self.instance_images_path) |
|
self.instance_prompt = instance_prompt |
|
self._length = self.num_instance_images |
|
|
|
if class_data_root is not None: |
|
self.class_data_root = Path(class_data_root) |
|
self.class_data_root.mkdir(parents=True, exist_ok=True) |
|
self.class_images_path = list(self.class_data_root.iterdir()) |
|
if class_num is not None: |
|
self.num_class_images = min(len(self.class_images_path), class_num) |
|
else: |
|
self.num_class_images = len(self.class_images_path) |
|
self._length = max(self.num_class_images, self.num_instance_images) |
|
self.class_prompt = class_prompt |
|
else: |
|
self.class_data_root = None |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
example["instance_images"] = self.image_transforms(instance_image) |
|
example["instance_prompt_ids"] = self.tokenizer( |
|
self.instance_prompt, |
|
padding="do_not_pad", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
).input_ids |
|
|
|
if self.class_data_root: |
|
class_image = Image.open(self.class_images_path[index % self.num_class_images]) |
|
if not class_image.mode == "RGB": |
|
class_image = class_image.convert("RGB") |
|
example["class_images"] = self.image_transforms(class_image) |
|
example["class_prompt_ids"] = self.tokenizer( |
|
self.class_prompt, |
|
padding="do_not_pad", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
def get_params_to_save(params): |
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
rng = jax.random.PRNGKey(args.seed) |
|
|
|
if args.with_prior_preservation: |
|
class_images_dir = Path(args.class_data_dir) |
|
if not class_images_dir.exists(): |
|
class_images_dir.mkdir(parents=True) |
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
if cur_class_images < args.num_class_images: |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision |
|
) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images) |
|
total_sample_batch_size = args.sample_batch_size * jax.local_device_count() |
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size) |
|
|
|
for example in tqdm( |
|
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0 |
|
): |
|
prompt_ids = pipeline.prepare_inputs(example["prompt"]) |
|
prompt_ids = shard(prompt_ids) |
|
p_params = jax_utils.replicate(params) |
|
rng = jax.random.split(rng)[0] |
|
sample_rng = jax.random.split(rng, jax.device_count()) |
|
images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images |
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) |
|
images = pipeline.numpy_to_pil(np.array(images)) |
|
|
|
for i, image in enumerate(images): |
|
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() |
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
image.save(image_filename) |
|
|
|
del pipeline |
|
|
|
|
|
if jax.process_index() == 0: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision |
|
) |
|
else: |
|
raise NotImplementedError("No tokenizer specified!") |
|
|
|
train_dataset = DreamBoothDataset( |
|
instance_data_root=args.instance_data_dir, |
|
instance_prompt=args.instance_prompt, |
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None, |
|
class_prompt=args.class_prompt, |
|
class_num=args.num_class_images, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
center_crop=args.center_crop, |
|
) |
|
|
|
def collate_fn(examples): |
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
|
|
|
|
|
|
if args.with_prior_preservation: |
|
input_ids += [example["class_prompt_ids"] for example in examples] |
|
pixel_values += [example["class_images"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = tokenizer.pad( |
|
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt" |
|
).input_ids |
|
|
|
batch = { |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
} |
|
batch = {k: v.numpy() for k, v in batch.items()} |
|
return batch |
|
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count() |
|
if len(train_dataset) < total_train_batch_size: |
|
raise ValueError( |
|
f"Training batch size is {total_train_batch_size}, but your dataset only contains" |
|
f" {len(train_dataset)} images. Please, use a larger dataset or reduce the effective batch size. Note that" |
|
f" there are {jax.local_device_count()} parallel devices, so your batch size can't be smaller than that." |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True |
|
) |
|
|
|
weight_dtype = jnp.float32 |
|
if args.mixed_precision == "fp16": |
|
weight_dtype = jnp.float16 |
|
elif args.mixed_precision == "bf16": |
|
weight_dtype = jnp.bfloat16 |
|
|
|
if args.pretrained_vae_name_or_path: |
|
|
|
vae_arg, vae_kwargs = (args.pretrained_vae_name_or_path, {"from_pt": True}) |
|
else: |
|
vae_arg, vae_kwargs = (args.pretrained_model_name_or_path, {"subfolder": "vae", "revision": args.revision}) |
|
|
|
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
dtype=weight_dtype, |
|
revision=args.revision, |
|
) |
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained( |
|
vae_arg, |
|
dtype=weight_dtype, |
|
**vae_kwargs, |
|
) |
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="unet", |
|
dtype=weight_dtype, |
|
revision=args.revision, |
|
) |
|
|
|
|
|
if args.scale_lr: |
|
args.learning_rate = args.learning_rate * total_train_batch_size |
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate) |
|
|
|
adamw = optax.adamw( |
|
learning_rate=constant_scheduler, |
|
b1=args.adam_beta1, |
|
b2=args.adam_beta2, |
|
eps=args.adam_epsilon, |
|
weight_decay=args.adam_weight_decay, |
|
) |
|
|
|
optimizer = optax.chain( |
|
optax.clip_by_global_norm(args.max_grad_norm), |
|
adamw, |
|
) |
|
|
|
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer) |
|
text_encoder_state = train_state.TrainState.create( |
|
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer |
|
) |
|
|
|
noise_scheduler = FlaxDDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 |
|
) |
|
noise_scheduler_state = noise_scheduler.create_state() |
|
|
|
|
|
train_rngs = jax.random.split(rng, jax.local_device_count()) |
|
|
|
def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng): |
|
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) |
|
|
|
if args.train_text_encoder: |
|
params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params} |
|
else: |
|
params = {"unet": unet_state.params} |
|
|
|
def compute_loss(params): |
|
|
|
vae_outputs = vae.apply( |
|
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode |
|
) |
|
latents = vae_outputs.latent_dist.sample(sample_rng) |
|
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2)) |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng) |
|
noise = jax.random.normal(noise_rng, latents.shape) |
|
|
|
bsz = latents.shape[0] |
|
timesteps = jax.random.randint( |
|
timestep_rng, |
|
(bsz,), |
|
0, |
|
noise_scheduler.config.num_train_timesteps, |
|
) |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) |
|
|
|
|
|
if args.train_text_encoder: |
|
encoder_hidden_states = text_encoder_state.apply_fn( |
|
batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True |
|
)[0] |
|
else: |
|
encoder_hidden_states = text_encoder( |
|
batch["input_ids"], params=text_encoder_state.params, train=False |
|
)[0] |
|
|
|
|
|
model_pred = unet.apply( |
|
{"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True |
|
).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.with_prior_preservation: |
|
|
|
model_pred, model_pred_prior = jnp.split(model_pred, 2, axis=0) |
|
target, target_prior = jnp.split(target, 2, axis=0) |
|
|
|
|
|
loss = (target - model_pred) ** 2 |
|
loss = loss.mean() |
|
|
|
|
|
prior_loss = (target_prior - model_pred_prior) ** 2 |
|
prior_loss = prior_loss.mean() |
|
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
else: |
|
loss = (target - model_pred) ** 2 |
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
loss, grad = grad_fn(params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
|
|
new_unet_state = unet_state.apply_gradients(grads=grad["unet"]) |
|
if args.train_text_encoder: |
|
new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"]) |
|
else: |
|
new_text_encoder_state = text_encoder_state |
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return new_unet_state, new_text_encoder_state, metrics, new_train_rng |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1)) |
|
|
|
|
|
unet_state = jax_utils.replicate(unet_state) |
|
text_encoder_state = jax_utils.replicate(text_encoder_state) |
|
vae_params = jax_utils.replicate(vae_params) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) |
|
|
|
|
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
def checkpoint(step=None): |
|
|
|
scheduler, _ = FlaxPNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") |
|
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( |
|
"CompVis/stable-diffusion-safety-checker", from_pt=True |
|
) |
|
pipeline = FlaxStableDiffusionPipeline( |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
unet=unet, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), |
|
) |
|
|
|
outdir = os.path.join(args.output_dir, str(step)) if step else args.output_dir |
|
pipeline.save_pretrained( |
|
outdir, |
|
params={ |
|
"text_encoder": get_params_to_save(text_encoder_state.params), |
|
"vae": get_params_to_save(vae_params), |
|
"unet": get_params_to_save(unet_state.params), |
|
"safety_checker": safety_checker.params, |
|
}, |
|
) |
|
|
|
if args.push_to_hub: |
|
message = f"checkpoint-{step}" if step is not None else "End of training" |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message=message, |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
global_step = 0 |
|
|
|
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0) |
|
for epoch in epochs: |
|
|
|
|
|
train_metrics = [] |
|
|
|
steps_per_epoch = len(train_dataset) // total_train_batch_size |
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) |
|
|
|
for batch in train_dataloader: |
|
batch = shard(batch) |
|
unet_state, text_encoder_state, train_metric, train_rngs = p_train_step( |
|
unet_state, text_encoder_state, vae_params, batch, train_rngs |
|
) |
|
train_metrics.append(train_metric) |
|
|
|
train_step_progress_bar.update(jax.local_device_count()) |
|
|
|
global_step += 1 |
|
if jax.process_index() == 0 and args.save_steps and global_step % args.save_steps == 0: |
|
checkpoint(global_step) |
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
train_metric = jax_utils.unreplicate(train_metric) |
|
|
|
train_step_progress_bar.close() |
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") |
|
|
|
if jax.process_index() == 0: |
|
checkpoint() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|