|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import contextlib |
|
import io |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
import wandb |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from peft import LoraConfig |
|
from peft.utils import get_peft_model_state_dict |
|
from PIL import Image |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DiffusionPipeline, |
|
DPMSolverMultistepScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.loaders import LoraLoaderMixin |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
|
|
check_min_version("0.25.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
VALIDATION_PROMPTS = [ |
|
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", |
|
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", |
|
] |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
revision=revision, |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def log_validation(args, unet, accelerator, weight_dtype, epoch, is_final_validation=False): |
|
logger.info(f"Running validation... \n Generating images with prompts:\n" f" {VALIDATION_PROMPTS}.") |
|
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
if not is_final_validation: |
|
pipeline.unet = accelerator.unwrap_model(unet) |
|
else: |
|
pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors") |
|
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
images = [] |
|
context = contextlib.nullcontext() if is_final_validation else torch.cuda.amp.autocast() |
|
|
|
for prompt in VALIDATION_PROMPTS: |
|
with context: |
|
image = pipeline(prompt, num_inference_steps=25, generator=generator).images[0] |
|
images.append(image) |
|
|
|
tracker_key = "test" if is_final_validation else "validation" |
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images(tracker_key, np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
tracker_key: [ |
|
wandb.Image(image, caption=f"{i}: {VALIDATION_PROMPTS[i]}") for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
|
|
if is_final_validation: |
|
pipeline.disable_lora() |
|
no_lora_images = [ |
|
pipeline(prompt, num_inference_steps=25, generator=generator).images[0] for prompt in VALIDATION_PROMPTS |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in no_lora_images]) |
|
tracker.writer.add_images("test_without_lora", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"test_without_lora": [ |
|
wandb.Image(image, caption=f"{i}: {VALIDATION_PROMPTS[i]}") |
|
for i, image in enumerate(no_lora_images) |
|
] |
|
} |
|
) |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_split_name", |
|
type=str, |
|
default="validation", |
|
help="Dataset split to be used during training. Helpful to specify for conducting experimental runs.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--run_validation", |
|
default=False, |
|
action="store_true", |
|
help="Whether to run validation inference in between training and also after training. Helps to track progress.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=200, |
|
help="Run validation every X steps.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="diffusion-dpo-lora", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--vae_encode_batch_size", |
|
type=int, |
|
default=8, |
|
help="Batch size to use for VAE encoding of the images for efficient processing.", |
|
) |
|
parser.add_argument( |
|
"--no_hflip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--random_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to random crop the input images to the resolution. If not set, the images will be center-cropped." |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--beta_dpo", |
|
type=int, |
|
default=2500, |
|
help="DPO KL Divergence penalty.", |
|
) |
|
parser.add_argument( |
|
"--loss_type", |
|
type=str, |
|
default="sigmoid", |
|
help="DPO loss type. Can be one of 'sigmoid' (default), 'ipo', or 'cpo'", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prior_generation_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp32", "fp16", "bf16"], |
|
help=( |
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--rank", |
|
type=int, |
|
default=4, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
parser.add_argument( |
|
"--tracker_name", |
|
type=str, |
|
default="diffusion-dpo-lora", |
|
help=("The name of the tracker to report results to."), |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
if args.dataset_name is None: |
|
raise ValueError("Must provide a `dataset_name`.") |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
|
|
def tokenize_captions(tokenizer, examples): |
|
max_length = tokenizer.model_max_length |
|
captions = [] |
|
for caption in examples["caption"]: |
|
captions.append(caption) |
|
|
|
text_inputs = tokenizer( |
|
captions, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt" |
|
) |
|
|
|
return text_inputs.input_ids |
|
|
|
|
|
@torch.no_grad() |
|
def encode_prompt(text_encoder, input_ids): |
|
text_input_ids = input_ids.to(text_encoder.device) |
|
attention_mask = None |
|
|
|
prompt_embeds = text_encoder(text_input_ids, attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
return prompt_embeds |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder = text_encoder_cls.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant |
|
) |
|
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
unet_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
) |
|
|
|
unet.add_adapter(unet_lora_config) |
|
if args.mixed_precision == "fp16": |
|
for param in unet.parameters(): |
|
|
|
if param.requires_grad: |
|
param.data = param.to(torch.float32) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
|
|
|
|
unet_lora_layers_to_save = None |
|
|
|
for model in models: |
|
if isinstance(model, type(accelerator.unwrap_model(unet))): |
|
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
weights.pop() |
|
|
|
LoraLoaderMixin.save_lora_weights( |
|
output_dir, |
|
unet_lora_layers=unet_lora_layers_to_save, |
|
text_encoder_lora_layers=None, |
|
) |
|
|
|
def load_model_hook(models, input_dir): |
|
unet_ = None |
|
|
|
while len(models) > 0: |
|
model = models.pop() |
|
|
|
if isinstance(model, type(accelerator.unwrap_model(unet))): |
|
unet_ = model |
|
else: |
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir) |
|
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters())) |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = load_dataset( |
|
args.dataset_name, |
|
cache_dir=args.cache_dir, |
|
split=args.dataset_split_name, |
|
) |
|
|
|
train_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(int(args.resolution), interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.RandomCrop(args.resolution) if args.random_crop else transforms.CenterCrop(args.resolution), |
|
transforms.Lambda(lambda x: x) if args.no_hflip else transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def preprocess_train(examples): |
|
all_pixel_values = [] |
|
for col_name in ["jpg_0", "jpg_1"]: |
|
images = [Image.open(io.BytesIO(im_bytes)).convert("RGB") for im_bytes in examples[col_name]] |
|
pixel_values = [train_transforms(image) for image in images] |
|
all_pixel_values.append(pixel_values) |
|
|
|
|
|
im_tup_iterator = zip(*all_pixel_values) |
|
combined_pixel_values = [] |
|
for im_tup, label_0 in zip(im_tup_iterator, examples["label_0"]): |
|
if label_0 == 0: |
|
im_tup = im_tup[::-1] |
|
combined_im = torch.cat(im_tup, dim=0) |
|
combined_pixel_values.append(combined_im) |
|
examples["pixel_values"] = combined_pixel_values |
|
|
|
examples["input_ids"] = tokenize_captions(tokenizer, examples) |
|
return examples |
|
|
|
with accelerator.main_process_first(): |
|
if args.max_train_samples is not None: |
|
train_dataset = train_dataset.shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
|
|
train_dataset = train_dataset.with_transform(preprocess_train) |
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
final_dict = {"pixel_values": pixel_values} |
|
final_dict["input_ids"] = torch.stack([example["input_ids"] for example in examples]) |
|
return final_dict |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers(args.tracker_name, config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
unet.train() |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
pixel_values = batch["pixel_values"].to(dtype=weight_dtype) |
|
feed_pixel_values = torch.cat(pixel_values.chunk(2, dim=1)) |
|
|
|
latents = [] |
|
for i in range(0, feed_pixel_values.shape[0], args.vae_encode_batch_size): |
|
latents.append( |
|
vae.encode(feed_pixel_values[i : i + args.vae_encode_batch_size]).latent_dist.sample() |
|
) |
|
latents = torch.cat(latents, dim=0) |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1, 1) |
|
|
|
|
|
bsz = latents.shape[0] // 2 |
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device, dtype=torch.long |
|
).repeat(2) |
|
|
|
|
|
|
|
noisy_model_input = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = encode_prompt(text_encoder, batch["input_ids"]).repeat(2, 1, 1) |
|
|
|
|
|
model_pred = unet( |
|
noisy_model_input, |
|
timesteps, |
|
encoder_hidden_states, |
|
).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
|
|
model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape)))) |
|
model_losses_w, model_losses_l = model_losses.chunk(2) |
|
|
|
|
|
raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean()) |
|
model_diff = model_losses_w - model_losses_l |
|
|
|
|
|
accelerator.unwrap_model(unet).disable_adapters() |
|
with torch.no_grad(): |
|
ref_preds = unet( |
|
noisy_model_input, |
|
timesteps, |
|
encoder_hidden_states, |
|
).sample.detach() |
|
ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none") |
|
ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape)))) |
|
|
|
ref_losses_w, ref_losses_l = ref_loss.chunk(2) |
|
ref_diff = ref_losses_w - ref_losses_l |
|
raw_ref_loss = ref_loss.mean() |
|
|
|
|
|
accelerator.unwrap_model(unet).enable_adapters() |
|
|
|
|
|
logits = ref_diff - model_diff |
|
if args.loss_type == "sigmoid": |
|
loss = -1 * F.logsigmoid(args.beta_dpo * logits).mean() |
|
elif args.loss_type == "hinge": |
|
loss = torch.relu(1 - args.beta_dpo * logits).mean() |
|
elif args.loss_type == "ipo": |
|
losses = (logits - 1 / (2 * args.beta)) ** 2 |
|
loss = losses.mean() |
|
else: |
|
raise ValueError(f"Unknown loss type {args.loss_type}") |
|
|
|
implicit_acc = (logits > 0).sum().float() / logits.size(0) |
|
implicit_acc += 0.5 * (logits == 0).sum().float() / logits.size(0) |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if args.run_validation and global_step % args.validation_steps == 0: |
|
log_validation( |
|
args, unet=unet, accelerator=accelerator, weight_dtype=weight_dtype, epoch=epoch |
|
) |
|
|
|
logs = { |
|
"loss": loss.detach().item(), |
|
"raw_model_loss": raw_model_loss.detach().item(), |
|
"ref_loss": raw_ref_loss.detach().item(), |
|
"implicit_acc": implicit_acc.detach().item(), |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
unet = unet.to(torch.float32) |
|
unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) |
|
|
|
LoraLoaderMixin.save_lora_weights( |
|
save_directory=args.output_dir, unet_lora_layers=unet_lora_state_dict, text_encoder_lora_layers=None |
|
) |
|
|
|
|
|
if args.run_validation: |
|
log_validation( |
|
args, |
|
unet=None, |
|
accelerator=accelerator, |
|
weight_dtype=weight_dtype, |
|
epoch=epoch, |
|
is_final_validation=True, |
|
) |
|
|
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|