|
import argparse |
|
|
|
import intel_extension_for_pytorch as ipex |
|
import torch |
|
|
|
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline |
|
|
|
|
|
parser = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) |
|
parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") |
|
parser.add_argument("--steps", default=None, type=int, help="Num inference steps") |
|
args = parser.parse_args() |
|
|
|
|
|
device = "cpu" |
|
prompt = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" |
|
|
|
model_id = "path-to-your-trained-model" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id) |
|
if args.dpm: |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to(device) |
|
|
|
|
|
pipe.unet = pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.vae = pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.text_encoder = pipe.text_encoder.to(memory_format=torch.channels_last) |
|
if pipe.requires_safety_checker: |
|
pipe.safety_checker = pipe.safety_checker.to(memory_format=torch.channels_last) |
|
|
|
|
|
sample = torch.randn(2, 4, 64, 64) |
|
timestep = torch.rand(1) * 999 |
|
encoder_hidden_status = torch.randn(2, 77, 768) |
|
input_example = (sample, timestep, encoder_hidden_status) |
|
try: |
|
pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=input_example) |
|
except Exception: |
|
pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True) |
|
pipe.vae = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloat16, inplace=True) |
|
pipe.text_encoder = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) |
|
if pipe.requires_safety_checker: |
|
pipe.safety_checker = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloat16, inplace=True) |
|
|
|
|
|
seed = 666 |
|
generator = torch.Generator(device).manual_seed(seed) |
|
generate_kwargs = {"generator": generator} |
|
if args.steps is not None: |
|
generate_kwargs["num_inference_steps"] = args.steps |
|
|
|
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): |
|
image = pipe(prompt, **generate_kwargs).images[0] |
|
|
|
|
|
image.save("generated.png") |
|
|