diffusers-sdxl-controlnet
/
examples
/research_projects
/scheduled_huber_loss_training
/dreambooth
/train_dreambooth.py
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import copy | |
import gc | |
import importlib | |
import itertools | |
import logging | |
import math | |
import os | |
import shutil | |
import warnings | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from huggingface_hub import create_repo, model_info, upload_folder | |
from huggingface_hub.utils import insecure_hashlib | |
from packaging import version | |
from PIL import Image | |
from PIL.ImageOps import exif_transpose | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, PretrainedConfig | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import compute_snr | |
from diffusers.utils import check_min_version, is_wandb_available | |
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import is_compiled_module | |
if is_wandb_available(): | |
import wandb | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.28.0.dev0") | |
logger = get_logger(__name__) | |
def save_model_card( | |
repo_id: str, | |
images: list = None, | |
base_model: str = None, | |
train_text_encoder=False, | |
prompt: str = None, | |
repo_folder: str = None, | |
pipeline: DiffusionPipeline = None, | |
): | |
img_str = "" | |
if images is not None: | |
for i, image in enumerate(images): | |
image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
img_str += f"![img_{i}](./image_{i}.png)\n" | |
model_description = f""" | |
# DreamBooth - {repo_id} | |
This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). | |
You can find some example images in the following. \n | |
{img_str} | |
DreamBooth for the text encoder was enabled: {train_text_encoder}. | |
""" | |
model_card = load_or_create_model_card( | |
repo_id_or_path=repo_id, | |
from_training=True, | |
license="creativeml-openrail-m", | |
base_model=base_model, | |
prompt=prompt, | |
model_description=model_description, | |
inference=True, | |
) | |
tags = ["text-to-image", "dreambooth", "diffusers-training"] | |
if isinstance(pipeline, StableDiffusionPipeline): | |
tags.extend(["stable-diffusion", "stable-diffusion-diffusers"]) | |
else: | |
tags.extend(["if", "if-diffusers"]) | |
model_card = populate_model_card(model_card, tags=tags) | |
model_card.save(os.path.join(repo_folder, "README.md")) | |
def log_validation( | |
text_encoder, | |
tokenizer, | |
unet, | |
vae, | |
args, | |
accelerator, | |
weight_dtype, | |
global_step, | |
prompt_embeds, | |
negative_prompt_embeds, | |
): | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
f" {args.validation_prompt}." | |
) | |
pipeline_args = {} | |
if vae is not None: | |
pipeline_args["vae"] = vae | |
# create pipeline (note: unet and vae are loaded again in float32) | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
unet=unet, | |
revision=args.revision, | |
variant=args.variant, | |
torch_dtype=weight_dtype, | |
**pipeline_args, | |
) | |
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it | |
scheduler_args = {} | |
if "variance_type" in pipeline.scheduler.config: | |
variance_type = pipeline.scheduler.config.variance_type | |
if variance_type in ["learned", "learned_range"]: | |
variance_type = "fixed_small" | |
scheduler_args["variance_type"] = variance_type | |
module = importlib.import_module("diffusers") | |
scheduler_class = getattr(module, args.validation_scheduler) | |
pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
if args.pre_compute_text_embeddings: | |
pipeline_args = { | |
"prompt_embeds": prompt_embeds, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
} | |
else: | |
pipeline_args = {"prompt": args.validation_prompt} | |
# run inference | |
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
images = [] | |
if args.validation_images is None: | |
for _ in range(args.num_validation_images): | |
with torch.autocast("cuda"): | |
image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0] | |
images.append(image) | |
else: | |
for image in args.validation_images: | |
image = Image.open(image) | |
image = pipeline(**pipeline_args, image=image, generator=generator).images[0] | |
images.append(image) | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
"validation": [ | |
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) | |
] | |
} | |
) | |
del pipeline | |
torch.cuda.empty_cache() | |
return images | |
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, | |
subfolder="text_encoder", | |
revision=revision, | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "RobertaSeriesModelWithTransformation": | |
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation | |
return RobertaSeriesModelWithTransformation | |
elif model_class == "T5EncoderModel": | |
from transformers import T5EncoderModel | |
return T5EncoderModel | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
required=True, | |
help="A folder containing the training data of instance images.", | |
) | |
parser.add_argument( | |
"--class_data_dir", | |
type=str, | |
default=None, | |
required=False, | |
help="A folder containing the training data of class images.", | |
) | |
parser.add_argument( | |
"--instance_prompt", | |
type=str, | |
default=None, | |
required=True, | |
help="The prompt with identifier specifying the instance", | |
) | |
parser.add_argument( | |
"--class_prompt", | |
type=str, | |
default=None, | |
help="The prompt to specify images in the same class as provided instance images.", | |
) | |
parser.add_argument( | |
"--with_prior_preservation", | |
default=False, | |
action="store_true", | |
help="Flag to add prior preservation loss.", | |
) | |
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
parser.add_argument( | |
"--num_class_images", | |
type=int, | |
default=100, | |
help=( | |
"Minimal class images for prior preservation loss. If there are not enough images already present in" | |
" class_data_dir, additional images will be sampled with class_prompt." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="dreambooth-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--train_text_encoder", | |
action="store_true", | |
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
"instructions." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=( | |
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
" for more details" | |
), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=5e-6, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="A prompt that is used during validation to verify that the model is learning.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=4, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=100, | |
help=( | |
"Run validation every X steps. Validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`" | |
" and logging the images." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--prior_generation_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp32", "fp16", "bf16"], | |
help=( | |
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--set_grads_to_none", | |
action="store_true", | |
help=( | |
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
" behaviors, so disable this argument if it causes any problems. More info:" | |
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
), | |
) | |
parser.add_argument( | |
"--offset_noise", | |
action="store_true", | |
default=False, | |
help=( | |
"Fine-tuning against a modified noise" | |
" See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information." | |
), | |
) | |
parser.add_argument( | |
"--snr_gamma", | |
type=float, | |
default=None, | |
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " | |
"More details here: https://arxiv.org/abs/2303.09556.", | |
) | |
parser.add_argument( | |
"--pre_compute_text_embeddings", | |
action="store_true", | |
help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.", | |
) | |
parser.add_argument( | |
"--tokenizer_max_length", | |
type=int, | |
default=None, | |
required=False, | |
help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.", | |
) | |
parser.add_argument( | |
"--text_encoder_use_attention_mask", | |
action="store_true", | |
required=False, | |
help="Whether to use attention mask for the text encoder", | |
) | |
parser.add_argument( | |
"--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder" | |
) | |
parser.add_argument( | |
"--validation_images", | |
required=False, | |
default=None, | |
nargs="+", | |
help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.", | |
) | |
parser.add_argument( | |
"--class_labels_conditioning", | |
required=False, | |
default=None, | |
help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.", | |
) | |
parser.add_argument( | |
"--loss_type", | |
type=str, | |
default="l2", | |
choices=["l2", "huber", "smooth_l1"], | |
help="The type of loss to use and whether it's timestep-scheduled. See Issue #7488 for more info.", | |
) | |
parser.add_argument( | |
"--huber_schedule", | |
type=str, | |
default="snr", | |
choices=["constant", "exponential", "snr"], | |
help="The schedule to use for the huber losses parameter", | |
) | |
parser.add_argument( | |
"--huber_c", | |
type=float, | |
default=0.1, | |
help="The huber loss parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type.", | |
) | |
parser.add_argument( | |
"--validation_scheduler", | |
type=str, | |
default="DPMSolverMultistepScheduler", | |
choices=["DPMSolverMultistepScheduler", "DDPMScheduler"], | |
help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.", | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.with_prior_preservation: | |
if args.class_data_dir is None: | |
raise ValueError("You must specify a data directory for class images.") | |
if args.class_prompt is None: | |
raise ValueError("You must specify prompt for class images.") | |
else: | |
# logger is not available yet | |
if args.class_data_dir is not None: | |
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") | |
if args.class_prompt is not None: | |
warnings.warn("You need not use --class_prompt without --with_prior_preservation.") | |
if args.train_text_encoder and args.pre_compute_text_embeddings: | |
raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`") | |
return args | |
class DreamBoothDataset(Dataset): | |
""" | |
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
It pre-processes the images and the tokenizes prompts. | |
""" | |
def __init__( | |
self, | |
instance_data_root, | |
instance_prompt, | |
tokenizer, | |
class_data_root=None, | |
class_prompt=None, | |
class_num=None, | |
size=512, | |
center_crop=False, | |
encoder_hidden_states=None, | |
class_prompt_encoder_hidden_states=None, | |
tokenizer_max_length=None, | |
): | |
self.size = size | |
self.center_crop = center_crop | |
self.tokenizer = tokenizer | |
self.encoder_hidden_states = encoder_hidden_states | |
self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states | |
self.tokenizer_max_length = tokenizer_max_length | |
self.instance_data_root = Path(instance_data_root) | |
if not self.instance_data_root.exists(): | |
raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.") | |
self.instance_images_path = list(Path(instance_data_root).iterdir()) | |
self.num_instance_images = len(self.instance_images_path) | |
self.instance_prompt = instance_prompt | |
self._length = self.num_instance_images | |
if class_data_root is not None: | |
self.class_data_root = Path(class_data_root) | |
self.class_data_root.mkdir(parents=True, exist_ok=True) | |
self.class_images_path = list(self.class_data_root.iterdir()) | |
if class_num is not None: | |
self.num_class_images = min(len(self.class_images_path), class_num) | |
else: | |
self.num_class_images = len(self.class_images_path) | |
self._length = max(self.num_class_images, self.num_instance_images) | |
self.class_prompt = class_prompt | |
else: | |
self.class_data_root = None | |
self.image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def __len__(self): | |
return self._length | |
def __getitem__(self, index): | |
example = {} | |
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) | |
instance_image = exif_transpose(instance_image) | |
if not instance_image.mode == "RGB": | |
instance_image = instance_image.convert("RGB") | |
example["instance_images"] = self.image_transforms(instance_image) | |
if self.encoder_hidden_states is not None: | |
example["instance_prompt_ids"] = self.encoder_hidden_states | |
else: | |
text_inputs = tokenize_prompt( | |
self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length | |
) | |
example["instance_prompt_ids"] = text_inputs.input_ids | |
example["instance_attention_mask"] = text_inputs.attention_mask | |
if self.class_data_root: | |
class_image = Image.open(self.class_images_path[index % self.num_class_images]) | |
class_image = exif_transpose(class_image) | |
if not class_image.mode == "RGB": | |
class_image = class_image.convert("RGB") | |
example["class_images"] = self.image_transforms(class_image) | |
if self.class_prompt_encoder_hidden_states is not None: | |
example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states | |
else: | |
class_text_inputs = tokenize_prompt( | |
self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length | |
) | |
example["class_prompt_ids"] = class_text_inputs.input_ids | |
example["class_attention_mask"] = class_text_inputs.attention_mask | |
return example | |
def collate_fn(examples, with_prior_preservation=False): | |
has_attention_mask = "instance_attention_mask" in examples[0] | |
input_ids = [example["instance_prompt_ids"] for example in examples] | |
pixel_values = [example["instance_images"] for example in examples] | |
if has_attention_mask: | |
attention_mask = [example["instance_attention_mask"] for example in examples] | |
# Concat class and instance examples for prior preservation. | |
# We do this to avoid doing two forward passes. | |
if with_prior_preservation: | |
input_ids += [example["class_prompt_ids"] for example in examples] | |
pixel_values += [example["class_images"] for example in examples] | |
if has_attention_mask: | |
attention_mask += [example["class_attention_mask"] for example in examples] | |
pixel_values = torch.stack(pixel_values) | |
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
input_ids = torch.cat(input_ids, dim=0) | |
batch = { | |
"input_ids": input_ids, | |
"pixel_values": pixel_values, | |
} | |
if has_attention_mask: | |
attention_mask = torch.cat(attention_mask, dim=0) | |
batch["attention_mask"] = attention_mask | |
return batch | |
class PromptDataset(Dataset): | |
"""A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" | |
def __init__(self, prompt, num_samples): | |
self.prompt = prompt | |
self.num_samples = num_samples | |
def __len__(self): | |
return self.num_samples | |
def __getitem__(self, index): | |
example = {} | |
example["prompt"] = self.prompt | |
example["index"] = index | |
return example | |
def model_has_vae(args): | |
config_file_name = os.path.join("vae", AutoencoderKL.config_name) | |
if os.path.isdir(args.pretrained_model_name_or_path): | |
config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name) | |
return os.path.isfile(config_file_name) | |
else: | |
files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings | |
return any(file.rfilename == config_file_name for file in files_in_repo) | |
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None): | |
if tokenizer_max_length is not None: | |
max_length = tokenizer_max_length | |
else: | |
max_length = tokenizer.model_max_length | |
text_inputs = tokenizer( | |
prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_tensors="pt", | |
) | |
return text_inputs | |
def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None): | |
text_input_ids = input_ids.to(text_encoder.device) | |
if text_encoder_use_attention_mask: | |
attention_mask = attention_mask.to(text_encoder.device) | |
else: | |
attention_mask = None | |
prompt_embeds = text_encoder( | |
text_input_ids, | |
attention_mask=attention_mask, | |
return_dict=False, | |
) | |
prompt_embeds = prompt_embeds[0] | |
return prompt_embeds | |
# NOTE: if you're using the scheduled version, huber_c has to depend on the timesteps already | |
def conditional_loss( | |
model_pred: torch.Tensor, | |
target: torch.Tensor, | |
reduction: str = "mean", | |
loss_type: str = "l2", | |
huber_c: float = 0.1, | |
): | |
if loss_type == "l2": | |
loss = F.mse_loss(model_pred, target, reduction=reduction) | |
elif loss_type == "huber": | |
loss = 2 * huber_c * (torch.sqrt((model_pred - target) ** 2 + huber_c**2) - huber_c) | |
if reduction == "mean": | |
loss = torch.mean(loss) | |
elif reduction == "sum": | |
loss = torch.sum(loss) | |
elif loss_type == "smooth_l1": | |
loss = 2 * (torch.sqrt((model_pred - target) ** 2 + huber_c**2) - huber_c) | |
if reduction == "mean": | |
loss = torch.mean(loss) | |
elif reduction == "sum": | |
loss = torch.sum(loss) | |
else: | |
raise NotImplementedError(f"Unsupported Loss Type {loss_type}") | |
return loss | |
def main(args): | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate | |
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. | |
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. | |
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: | |
raise ValueError( | |
"Gradient accumulation is not supported when training the text encoder in distributed training. " | |
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future." | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Generate class images if prior preservation is enabled. | |
if args.with_prior_preservation: | |
class_images_dir = Path(args.class_data_dir) | |
if not class_images_dir.exists(): | |
class_images_dir.mkdir(parents=True) | |
cur_class_images = len(list(class_images_dir.iterdir())) | |
if cur_class_images < args.num_class_images: | |
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 | |
if args.prior_generation_precision == "fp32": | |
torch_dtype = torch.float32 | |
elif args.prior_generation_precision == "fp16": | |
torch_dtype = torch.float16 | |
elif args.prior_generation_precision == "bf16": | |
torch_dtype = torch.bfloat16 | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
torch_dtype=torch_dtype, | |
safety_checker=None, | |
revision=args.revision, | |
variant=args.variant, | |
) | |
pipeline.set_progress_bar_config(disable=True) | |
num_new_images = args.num_class_images - cur_class_images | |
logger.info(f"Number of class images to sample: {num_new_images}.") | |
sample_dataset = PromptDataset(args.class_prompt, num_new_images) | |
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | |
sample_dataloader = accelerator.prepare(sample_dataloader) | |
pipeline.to(accelerator.device) | |
for example in tqdm( | |
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | |
): | |
images = pipeline(example["prompt"]).images | |
for i, image in enumerate(images): | |
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() | |
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
image.save(image_filename) | |
del pipeline | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Load the tokenizer | |
if args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
use_fast=False, | |
) | |
# import correct text encoder class | |
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
text_encoder = text_encoder_cls.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
) | |
if model_has_vae(args): | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
) | |
else: | |
vae = None | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
) | |
def unwrap_model(model): | |
model = accelerator.unwrap_model(model) | |
model = model._orig_mod if is_compiled_module(model) else model | |
return model | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
for model in models: | |
sub_dir = "unet" if isinstance(model, type(unwrap_model(unet))) else "text_encoder" | |
model.save_pretrained(os.path.join(output_dir, sub_dir)) | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
while len(models) > 0: | |
# pop models so that they are not loaded again | |
model = models.pop() | |
if isinstance(model, type(unwrap_model(text_encoder))): | |
# load transformers style into model | |
load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder") | |
model.config = load_model.config | |
else: | |
# load diffusers style into model | |
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
if vae is not None: | |
vae.requires_grad_(False) | |
if not args.train_text_encoder: | |
text_encoder.requires_grad_(False) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warning( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if args.train_text_encoder: | |
text_encoder.gradient_checkpointing_enable() | |
# Check that all trainable models are in full precision | |
low_precision_error_string = ( | |
"Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
" doing mixed precision training. copy of the weights should still be float32." | |
) | |
if unwrap_model(unet).dtype != torch.float32: | |
raise ValueError(f"Unet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}") | |
if args.train_text_encoder and unwrap_model(text_encoder).dtype != torch.float32: | |
raise ValueError( | |
f"Text encoder loaded as datatype {unwrap_model(text_encoder).dtype}." f" {low_precision_error_string}" | |
) | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
# Optimizer creation | |
params_to_optimize = ( | |
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() | |
) | |
optimizer = optimizer_class( | |
params_to_optimize, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
if args.pre_compute_text_embeddings: | |
def compute_text_embeddings(prompt): | |
with torch.no_grad(): | |
text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length) | |
prompt_embeds = encode_prompt( | |
text_encoder, | |
text_inputs.input_ids, | |
text_inputs.attention_mask, | |
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask, | |
) | |
return prompt_embeds | |
pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt) | |
validation_prompt_negative_prompt_embeds = compute_text_embeddings("") | |
if args.validation_prompt is not None: | |
validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt) | |
else: | |
validation_prompt_encoder_hidden_states = None | |
if args.class_prompt is not None: | |
pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt) | |
else: | |
pre_computed_class_prompt_encoder_hidden_states = None | |
text_encoder = None | |
tokenizer = None | |
gc.collect() | |
torch.cuda.empty_cache() | |
else: | |
pre_computed_encoder_hidden_states = None | |
validation_prompt_encoder_hidden_states = None | |
validation_prompt_negative_prompt_embeds = None | |
pre_computed_class_prompt_encoder_hidden_states = None | |
# Dataset and DataLoaders creation: | |
train_dataset = DreamBoothDataset( | |
instance_data_root=args.instance_data_dir, | |
instance_prompt=args.instance_prompt, | |
class_data_root=args.class_data_dir if args.with_prior_preservation else None, | |
class_prompt=args.class_prompt, | |
class_num=args.num_class_images, | |
tokenizer=tokenizer, | |
size=args.resolution, | |
center_crop=args.center_crop, | |
encoder_hidden_states=pre_computed_encoder_hidden_states, | |
class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states, | |
tokenizer_max_length=args.tokenizer_max_length, | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
if args.train_text_encoder: | |
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, text_encoder, optimizer, train_dataloader, lr_scheduler | |
) | |
else: | |
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, optimizer, train_dataloader, lr_scheduler | |
) | |
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move vae and text_encoder to device and cast to weight_dtype | |
if vae is not None: | |
vae.to(accelerator.device, dtype=weight_dtype) | |
if not args.train_text_encoder and text_encoder is not None: | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_config = vars(copy.deepcopy(args)) | |
tracker_config.pop("validation_images") | |
accelerator.init_trackers("dreambooth", config=tracker_config) | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
for epoch in range(first_epoch, args.num_train_epochs): | |
unet.train() | |
if args.train_text_encoder: | |
text_encoder.train() | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(unet): | |
pixel_values = batch["pixel_values"].to(dtype=weight_dtype) | |
if vae is not None: | |
# Convert images to latent space | |
model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() | |
model_input = model_input * vae.config.scaling_factor | |
else: | |
model_input = pixel_values | |
# Sample noise that we'll add to the model input | |
if args.offset_noise: | |
noise = torch.randn_like(model_input) + 0.1 * torch.randn( | |
model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device | |
) | |
else: | |
noise = torch.randn_like(model_input) | |
bsz, channels, height, width = model_input.shape | |
# Sample a random timestep for each image | |
if args.loss_type == "huber" or args.loss_type == "smooth_l1": | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device="cpu") | |
timestep = timesteps.item() | |
if args.huber_schedule == "exponential": | |
alpha = -math.log(args.huber_c) / noise_scheduler.config.num_train_timesteps | |
huber_c = math.exp(-alpha * timestep) | |
elif args.huber_schedule == "snr": | |
alphas_cumprod = noise_scheduler.alphas_cumprod[timestep] | |
sigmas = ((1.0 - alphas_cumprod) / alphas_cumprod) ** 0.5 | |
huber_c = (1 - args.huber_c) / (1 + sigmas) ** 2 + args.huber_c | |
elif args.huber_schedule == "constant": | |
huber_c = args.huber_c | |
else: | |
raise NotImplementedError(f"Unknown Huber loss schedule {args.huber_schedule}!") | |
timesteps = timesteps.repeat(bsz).to(model_input.device) | |
elif args.loss_type == "l2": | |
timesteps = torch.randint( | |
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device | |
) | |
huber_c = 1 # may be anything, as it's not used | |
else: | |
raise NotImplementedError(f"Unknown loss type {args.loss_type}") | |
timesteps = timesteps.long() | |
# Add noise to the model input according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) | |
# Get the text embedding for conditioning | |
if args.pre_compute_text_embeddings: | |
encoder_hidden_states = batch["input_ids"] | |
else: | |
encoder_hidden_states = encode_prompt( | |
text_encoder, | |
batch["input_ids"], | |
batch["attention_mask"], | |
text_encoder_use_attention_mask=args.text_encoder_use_attention_mask, | |
) | |
if unwrap_model(unet).config.in_channels == channels * 2: | |
noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1) | |
if args.class_labels_conditioning == "timesteps": | |
class_labels = timesteps | |
else: | |
class_labels = None | |
# Predict the noise residual | |
model_pred = unet( | |
noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False | |
)[0] | |
if model_pred.shape[1] == 6: | |
model_pred, _ = torch.chunk(model_pred, 2, dim=1) | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(model_input, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
if args.with_prior_preservation: | |
# Chunk the noise and model_pred into two parts and compute the loss on each part separately. | |
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | |
target, target_prior = torch.chunk(target, 2, dim=0) | |
# Compute prior loss | |
prior_loss = conditional_loss( | |
model_pred_prior.float(), | |
target_prior.float(), | |
reduction="mean", | |
loss_type=args.loss_type, | |
huber_c=huber_c, | |
) | |
# Compute instance loss | |
if args.snr_gamma is None: | |
loss = conditional_loss( | |
model_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c | |
) | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Since we predict the noise instead of x_0, the original formulation is slightly changed. | |
# This is discussed in Section 4.2 of the same paper. | |
snr = compute_snr(noise_scheduler, timesteps) | |
base_weight = ( | |
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
if noise_scheduler.config.prediction_type == "v_prediction": | |
# Velocity objective needs to be floored to an SNR weight of one. | |
mse_loss_weights = base_weight + 1 | |
else: | |
# Epsilon and sample both use the same loss weights. | |
mse_loss_weights = base_weight | |
loss = conditional_loss( | |
model_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c | |
) | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
if args.with_prior_preservation: | |
# Add the prior loss to the instance loss. | |
loss = loss + args.prior_loss_weight * prior_loss | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = ( | |
itertools.chain(unet.parameters(), text_encoder.parameters()) | |
if args.train_text_encoder | |
else unet.parameters() | |
) | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
images = [] | |
if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
images = log_validation( | |
unwrap_model(text_encoder) if text_encoder is not None else text_encoder, | |
tokenizer, | |
unwrap_model(unet), | |
vae, | |
args, | |
accelerator, | |
weight_dtype, | |
global_step, | |
validation_prompt_encoder_hidden_states, | |
validation_prompt_negative_prompt_embeds, | |
) | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
pipeline_args = {} | |
if text_encoder is not None: | |
pipeline_args["text_encoder"] = unwrap_model(text_encoder) | |
if args.skip_save_text_encoder: | |
pipeline_args["text_encoder"] = None | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=unwrap_model(unet), | |
revision=args.revision, | |
variant=args.variant, | |
**pipeline_args, | |
) | |
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it | |
scheduler_args = {} | |
if "variance_type" in pipeline.scheduler.config: | |
variance_type = pipeline.scheduler.config.variance_type | |
if variance_type in ["learned", "learned_range"]: | |
variance_type = "fixed_small" | |
scheduler_args["variance_type"] = variance_type | |
pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) | |
pipeline.save_pretrained(args.output_dir) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
images=images, | |
base_model=args.pretrained_model_name_or_path, | |
train_text_encoder=args.train_text_encoder, | |
prompt=args.instance_prompt, | |
repo_folder=args.output_dir, | |
pipeline=pipeline, | |
) | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message="End of training", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |