|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Fine-tuning script for Stable Diffusion XL for text2image.""" |
|
|
|
import argparse |
|
import functools |
|
import gc |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import datasets |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DistributedType, ProjectConfiguration, set_seed |
|
from datasets import concatenate_datasets, load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import crop |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
import diffusers |
|
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import EMAModel, compute_snr |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card |
|
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
if is_torch_npu_available(): |
|
torch.npu.config.allow_internal_format = False |
|
|
|
DATASET_NAME_MAPPING = { |
|
"lambdalabs/naruto-blip-captions": ("image", "text"), |
|
} |
|
|
|
|
|
def save_model_card( |
|
repo_id: str, |
|
images: list = None, |
|
validation_prompt: str = None, |
|
base_model: str = None, |
|
dataset_name: str = None, |
|
repo_folder: str = None, |
|
vae_path: str = None, |
|
): |
|
img_str = "" |
|
if images is not None: |
|
for i, image in enumerate(images): |
|
image.save(os.path.join(repo_folder, f"image_{i}.png")) |
|
img_str += f"![img_{i}](./image_{i}.png)\n" |
|
|
|
model_description = f""" |
|
# Text-to-image finetuning - {repo_id} |
|
|
|
This pipeline was finetuned from **{base_model}** on the **{dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: {validation_prompt}: \n |
|
{img_str} |
|
|
|
Special VAE used for training: {vae_path}. |
|
""" |
|
|
|
model_card = load_or_create_model_card( |
|
repo_id_or_path=repo_id, |
|
from_training=True, |
|
license="creativeml-openrail-m", |
|
base_model=base_model, |
|
model_description=model_description, |
|
inference=True, |
|
) |
|
|
|
tags = [ |
|
"stable-diffusion-xl", |
|
"stable-diffusion-xl-diffusers", |
|
"text-to-image", |
|
"diffusers-training", |
|
"diffusers", |
|
] |
|
model_card = populate_model_card(model_card, tags=tags) |
|
|
|
model_card.save(os.path.join(repo_folder, "README.md")) |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing an image." |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--validation_epochs", |
|
type=int, |
|
default=1, |
|
help=( |
|
"Run fine-tuning validation every X epochs. The validation process consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--proportion_empty_prompts", |
|
type=float, |
|
default=0, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="sdxl-model-finetuned", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=1024, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--timestep_bias_strategy", |
|
type=str, |
|
default="none", |
|
choices=["earlier", "later", "range", "none"], |
|
help=( |
|
"The timestep bias strategy, which may help direct the model toward learning low or high frequency details." |
|
" Choices: ['earlier', 'later', 'range', 'none']." |
|
" The default is 'none', which means no bias is applied, and training proceeds normally." |
|
" The value of 'later' will increase the frequency of the model's final training timesteps." |
|
), |
|
) |
|
parser.add_argument( |
|
"--timestep_bias_multiplier", |
|
type=float, |
|
default=1.0, |
|
help=( |
|
"The multiplier for the bias. Defaults to 1.0, which means no bias is applied." |
|
" A value of 2.0 will double the weight of the bias, and a value of 0.5 will halve it." |
|
), |
|
) |
|
parser.add_argument( |
|
"--timestep_bias_begin", |
|
type=int, |
|
default=0, |
|
help=( |
|
"When using `--timestep_bias_strategy=range`, the beginning (inclusive) timestep to bias." |
|
" Defaults to zero, which equates to having no specific bias." |
|
), |
|
) |
|
parser.add_argument( |
|
"--timestep_bias_end", |
|
type=int, |
|
default=1000, |
|
help=( |
|
"When using `--timestep_bias_strategy=range`, the final timestep (inclusive) to bias." |
|
" Defaults to 1000, which is the number of timesteps that Stable Diffusion is trained on." |
|
), |
|
) |
|
parser.add_argument( |
|
"--timestep_bias_portion", |
|
type=float, |
|
default=0.25, |
|
help=( |
|
"The portion of timesteps to bias. Defaults to 0.25, which 25% of timesteps will be biased." |
|
" A value of 0.5 will bias one half of the timesteps. The value provided for `--timestep_bias_strategy` determines" |
|
" whether the biased portions are in the earlier or later timesteps." |
|
), |
|
) |
|
parser.add_argument( |
|
"--snr_gamma", |
|
type=float, |
|
default=None, |
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " |
|
"More details here: https://arxiv.org/abs/2303.09556.", |
|
) |
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--prediction_type", |
|
type=str, |
|
default=None, |
|
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.", |
|
) |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--enable_npu_flash_attention", action="store_true", help="Whether or not to use npu flash attention." |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("Need either a dataset name or a training folder.") |
|
|
|
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: |
|
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") |
|
|
|
return args |
|
|
|
|
|
|
|
def encode_prompt(batch, text_encoders, tokenizers, proportion_empty_prompts, caption_column, is_train=True): |
|
prompt_embeds_list = [] |
|
prompt_batch = batch[caption_column] |
|
|
|
captions = [] |
|
for caption in prompt_batch: |
|
if random.random() < proportion_empty_prompts: |
|
captions.append("") |
|
elif isinstance(caption, str): |
|
captions.append(caption) |
|
elif isinstance(caption, (list, np.ndarray)): |
|
|
|
captions.append(random.choice(caption) if is_train else caption[0]) |
|
|
|
with torch.no_grad(): |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
captions, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
return_dict=False, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds[-1][-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return {"prompt_embeds": prompt_embeds.cpu(), "pooled_prompt_embeds": pooled_prompt_embeds.cpu()} |
|
|
|
|
|
def compute_vae_encodings(batch, vae): |
|
images = batch.pop("pixel_values") |
|
pixel_values = torch.stack(list(images)) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
pixel_values = pixel_values.to(vae.device, dtype=vae.dtype) |
|
|
|
with torch.no_grad(): |
|
model_input = vae.encode(pixel_values).latent_dist.sample() |
|
model_input = model_input * vae.config.scaling_factor |
|
return {"model_input": model_input.cpu()} |
|
|
|
|
|
def generate_timestep_weights(args, num_timesteps): |
|
weights = torch.ones(num_timesteps) |
|
|
|
|
|
num_to_bias = int(args.timestep_bias_portion * num_timesteps) |
|
|
|
if args.timestep_bias_strategy == "later": |
|
bias_indices = slice(-num_to_bias, None) |
|
elif args.timestep_bias_strategy == "earlier": |
|
bias_indices = slice(0, num_to_bias) |
|
elif args.timestep_bias_strategy == "range": |
|
|
|
range_begin = args.timestep_bias_begin |
|
range_end = args.timestep_bias_end |
|
if range_begin < 0: |
|
raise ValueError( |
|
"When using the range strategy for timestep bias, you must provide a beginning timestep greater or equal to zero." |
|
) |
|
if range_end > num_timesteps: |
|
raise ValueError( |
|
"When using the range strategy for timestep bias, you must provide an ending timestep smaller than the number of timesteps." |
|
) |
|
bias_indices = slice(range_begin, range_end) |
|
else: |
|
return weights |
|
if args.timestep_bias_multiplier <= 0: |
|
return ValueError( |
|
"The parameter --timestep_bias_multiplier is not intended to be used to disable the training of specific timesteps." |
|
" If it was intended to disable timestep bias, use `--timestep_bias_strategy none` instead." |
|
" A timestep bias multiplier less than or equal to 0 is not allowed." |
|
) |
|
|
|
|
|
weights[bias_indices] *= args.timestep_bias_multiplier |
|
|
|
|
|
weights /= weights.sum() |
|
|
|
return weights |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
import wandb |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer_2", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" |
|
) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant |
|
) |
|
vae_path = ( |
|
args.pretrained_model_name_or_path |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
|
|
unet.train() |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
vae.to(accelerator.device, dtype=torch.float32) |
|
text_encoder_one.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_two.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
if args.use_ema: |
|
ema_unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant |
|
) |
|
ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) |
|
if args.enable_npu_flash_attention: |
|
if is_torch_npu_available(): |
|
logger.info("npu flash attention enabled.") |
|
unet.enable_npu_flash_attention() |
|
else: |
|
raise ValueError("npu flash attention requires torch_npu extensions and is supported only on npu devices.") |
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
if args.use_ema: |
|
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) |
|
|
|
for i, model in enumerate(models): |
|
model.save_pretrained(os.path.join(output_dir, "unet")) |
|
|
|
|
|
if weights: |
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
if args.use_ema: |
|
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) |
|
ema_unet.load_state_dict(load_model.state_dict()) |
|
ema_unet.to(accelerator.device) |
|
del load_model |
|
|
|
for _ in range(len(models)): |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
params_to_optimize = unet.parameters() |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None: |
|
|
|
dataset = load_dataset( |
|
args.dataset_name, |
|
args.dataset_config_name, |
|
cache_dir=args.cache_dir, |
|
) |
|
else: |
|
data_files = {} |
|
if args.train_data_dir is not None: |
|
data_files["train"] = os.path.join(args.train_data_dir, "**") |
|
dataset = load_dataset( |
|
"imagefolder", |
|
data_files=data_files, |
|
cache_dir=args.cache_dir, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
column_names = dataset["train"].column_names |
|
|
|
|
|
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) |
|
if args.image_column is None: |
|
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] |
|
else: |
|
image_column = args.image_column |
|
if image_column not in column_names: |
|
raise ValueError( |
|
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
if args.caption_column is None: |
|
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] |
|
else: |
|
caption_column = args.caption_column |
|
if caption_column not in column_names: |
|
raise ValueError( |
|
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
|
|
|
|
train_resize = transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR) |
|
train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution) |
|
train_flip = transforms.RandomHorizontalFlip(p=1.0) |
|
train_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) |
|
|
|
def preprocess_train(examples): |
|
images = [image.convert("RGB") for image in examples[image_column]] |
|
|
|
original_sizes = [] |
|
all_images = [] |
|
crop_top_lefts = [] |
|
for image in images: |
|
original_sizes.append((image.height, image.width)) |
|
image = train_resize(image) |
|
if args.random_flip and random.random() < 0.5: |
|
|
|
image = train_flip(image) |
|
if args.center_crop: |
|
y1 = max(0, int(round((image.height - args.resolution) / 2.0))) |
|
x1 = max(0, int(round((image.width - args.resolution) / 2.0))) |
|
image = train_crop(image) |
|
else: |
|
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) |
|
image = crop(image, y1, x1, h, w) |
|
crop_top_left = (y1, x1) |
|
crop_top_lefts.append(crop_top_left) |
|
image = train_transforms(image) |
|
all_images.append(image) |
|
|
|
examples["original_sizes"] = original_sizes |
|
examples["crop_top_lefts"] = crop_top_lefts |
|
examples["pixel_values"] = all_images |
|
return examples |
|
|
|
with accelerator.main_process_first(): |
|
if args.max_train_samples is not None: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
|
|
train_dataset = dataset["train"].with_transform(preprocess_train) |
|
|
|
|
|
|
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
compute_embeddings_fn = functools.partial( |
|
encode_prompt, |
|
text_encoders=text_encoders, |
|
tokenizers=tokenizers, |
|
proportion_empty_prompts=args.proportion_empty_prompts, |
|
caption_column=args.caption_column, |
|
) |
|
compute_vae_encodings_fn = functools.partial(compute_vae_encodings, vae=vae) |
|
with accelerator.main_process_first(): |
|
from datasets.fingerprint import Hasher |
|
|
|
|
|
|
|
new_fingerprint = Hasher.hash(args) |
|
new_fingerprint_for_vae = Hasher.hash(vae_path) |
|
train_dataset_with_embeddings = train_dataset.map( |
|
compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint |
|
) |
|
train_dataset_with_vae = train_dataset.map( |
|
compute_vae_encodings_fn, |
|
batched=True, |
|
batch_size=args.train_batch_size, |
|
new_fingerprint=new_fingerprint_for_vae, |
|
) |
|
precomputed_dataset = concatenate_datasets( |
|
[train_dataset_with_embeddings, train_dataset_with_vae.remove_columns(["image", "text"])], axis=1 |
|
) |
|
precomputed_dataset = precomputed_dataset.with_transform(preprocess_train) |
|
|
|
del compute_vae_encodings_fn, compute_embeddings_fn, text_encoder_one, text_encoder_two |
|
del text_encoders, tokenizers, vae |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def collate_fn(examples): |
|
model_input = torch.stack([torch.tensor(example["model_input"]) for example in examples]) |
|
original_sizes = [example["original_sizes"] for example in examples] |
|
crop_top_lefts = [example["crop_top_lefts"] for example in examples] |
|
prompt_embeds = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples]) |
|
pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples]) |
|
|
|
return { |
|
"model_input": model_input, |
|
"prompt_embeds": prompt_embeds, |
|
"pooled_prompt_embeds": pooled_prompt_embeds, |
|
"original_sizes": original_sizes, |
|
"crop_top_lefts": crop_top_lefts, |
|
} |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
precomputed_dataset, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
if args.use_ema: |
|
ema_unet.to(accelerator.device) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("text2image-fine-tune-sdxl", config=vars(args)) |
|
|
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path: |
|
autocast_ctx = nullcontext() |
|
else: |
|
autocast_ctx = torch.autocast(accelerator.device.type) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(precomputed_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
train_loss = 0.0 |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
model_input = batch["model_input"].to(accelerator.device) |
|
noise = torch.randn_like(model_input) |
|
if args.noise_offset: |
|
|
|
noise += args.noise_offset * torch.randn( |
|
(model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device |
|
) |
|
|
|
bsz = model_input.shape[0] |
|
if args.timestep_bias_strategy == "none": |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device |
|
) |
|
else: |
|
|
|
|
|
weights = generate_timestep_weights(args, noise_scheduler.config.num_train_timesteps).to( |
|
model_input.device |
|
) |
|
timesteps = torch.multinomial(weights, bsz, replacement=True).long() |
|
|
|
|
|
|
|
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) |
|
|
|
|
|
def compute_time_ids(original_size, crops_coords_top_left): |
|
|
|
target_size = (args.resolution, args.resolution) |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) |
|
return add_time_ids |
|
|
|
add_time_ids = torch.cat( |
|
[compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] |
|
) |
|
|
|
|
|
unet_added_conditions = {"time_ids": add_time_ids} |
|
prompt_embeds = batch["prompt_embeds"].to(accelerator.device) |
|
pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(accelerator.device) |
|
unet_added_conditions.update({"text_embeds": pooled_prompt_embeds}) |
|
model_pred = unet( |
|
noisy_model_input, |
|
timesteps, |
|
prompt_embeds, |
|
added_cond_kwargs=unet_added_conditions, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if args.prediction_type is not None: |
|
|
|
noise_scheduler.register_to_config(prediction_type=args.prediction_type) |
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(model_input, noise, timesteps) |
|
elif noise_scheduler.config.prediction_type == "sample": |
|
|
|
target = model_input |
|
|
|
model_pred = model_pred - noise |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
if args.snr_gamma is None: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
else: |
|
|
|
|
|
|
|
snr = compute_snr(noise_scheduler, timesteps) |
|
mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min( |
|
dim=1 |
|
)[0] |
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
mse_loss_weights = mse_loss_weights / snr |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
mse_loss_weights = mse_loss_weights / (snr + 1) |
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights |
|
loss = loss.mean() |
|
|
|
|
|
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() |
|
train_loss += avg_loss.item() / args.gradient_accumulation_steps |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = unet.parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
if args.use_ema: |
|
ema_unet.step(unet.parameters()) |
|
progress_bar.update(1) |
|
global_step += 1 |
|
accelerator.log({"train_loss": train_loss}, step=global_step) |
|
train_loss = 0.0 |
|
|
|
|
|
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if accelerator.is_main_process: |
|
if args.validation_prompt is not None and epoch % args.validation_epochs == 0: |
|
logger.info( |
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" |
|
f" {args.validation_prompt}." |
|
) |
|
if args.use_ema: |
|
|
|
ema_unet.store(unet.parameters()) |
|
ema_unet.copy_to(unet.parameters()) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=vae, |
|
unet=accelerator.unwrap_model(unet), |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
if args.prediction_type is not None: |
|
scheduler_args = {"prediction_type": args.prediction_type} |
|
pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) |
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
pipeline_args = {"prompt": args.validation_prompt} |
|
|
|
with autocast_ctx: |
|
images = [ |
|
pipeline(**pipeline_args, generator=generator, num_inference_steps=25).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"validation": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
if args.use_ema: |
|
|
|
ema_unet.restore(unet.parameters()) |
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = unwrap_model(unet) |
|
if args.use_ema: |
|
ema_unet.copy_to(unet.parameters()) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=unet, |
|
vae=vae, |
|
revision=args.revision, |
|
variant=args.variant, |
|
torch_dtype=weight_dtype, |
|
) |
|
if args.prediction_type is not None: |
|
scheduler_args = {"prediction_type": args.prediction_type} |
|
pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) |
|
pipeline.save_pretrained(args.output_dir) |
|
|
|
|
|
images = [] |
|
if args.validation_prompt and args.num_validation_images > 0: |
|
pipeline = pipeline.to(accelerator.device) |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
|
|
with autocast_ctx: |
|
images = [ |
|
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] |
|
for _ in range(args.num_validation_images) |
|
] |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log( |
|
{ |
|
"test": [ |
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") |
|
for i, image in enumerate(images) |
|
] |
|
} |
|
) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id=repo_id, |
|
images=images, |
|
validation_prompt=args.validation_prompt, |
|
base_model=args.pretrained_model_name_or_path, |
|
dataset_name=args.dataset_name, |
|
repo_folder=args.output_dir, |
|
vae_path=args.pretrained_vae_model_name_or_path, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|