|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import random |
|
from pathlib import Path |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import PIL |
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
from flax import jax_utils |
|
from flax.training import train_state |
|
from flax.training.common_utils import shard |
|
from huggingface_hub import create_repo, upload_folder |
|
|
|
|
|
from packaging import version |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed |
|
|
|
from diffusers import ( |
|
FlaxAutoencoderKL, |
|
FlaxDDPMScheduler, |
|
FlaxPNDMScheduler, |
|
FlaxStableDiffusionPipeline, |
|
FlaxUNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker |
|
from diffusers.utils import check_min_version |
|
|
|
|
|
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): |
|
PIL_INTERPOLATION = { |
|
"linear": PIL.Image.Resampling.BILINEAR, |
|
"bilinear": PIL.Image.Resampling.BILINEAR, |
|
"bicubic": PIL.Image.Resampling.BICUBIC, |
|
"lanczos": PIL.Image.Resampling.LANCZOS, |
|
"nearest": PIL.Image.Resampling.NEAREST, |
|
} |
|
else: |
|
PIL_INTERPOLATION = { |
|
"linear": PIL.Image.LINEAR, |
|
"bilinear": PIL.Image.BILINEAR, |
|
"bicubic": PIL.Image.BICUBIC, |
|
"lanczos": PIL.Image.LANCZOS, |
|
"nearest": PIL.Image.NEAREST, |
|
} |
|
|
|
|
|
|
|
check_min_version("0.30.0.dev0") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." |
|
) |
|
parser.add_argument( |
|
"--placeholder_token", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A token to use as a placeholder for the concept.", |
|
) |
|
parser.add_argument( |
|
"--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word." |
|
) |
|
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") |
|
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="text-inversion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution." |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=5000, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--save_steps", |
|
type=int, |
|
default=500, |
|
help="Save learned_embeds.bin every X updates steps.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=True, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument( |
|
"--use_auth_token", |
|
action="store_true", |
|
help=( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with" |
|
" private models)." |
|
), |
|
) |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
if args.train_data_dir is None: |
|
raise ValueError("You must specify a train data directory.") |
|
|
|
return args |
|
|
|
|
|
imagenet_templates_small = [ |
|
"a photo of a {}", |
|
"a rendering of a {}", |
|
"a cropped photo of the {}", |
|
"the photo of a {}", |
|
"a photo of a clean {}", |
|
"a photo of a dirty {}", |
|
"a dark photo of the {}", |
|
"a photo of my {}", |
|
"a photo of the cool {}", |
|
"a close-up photo of a {}", |
|
"a bright photo of the {}", |
|
"a cropped photo of a {}", |
|
"a photo of the {}", |
|
"a good photo of the {}", |
|
"a photo of one {}", |
|
"a close-up photo of the {}", |
|
"a rendition of the {}", |
|
"a photo of the clean {}", |
|
"a rendition of a {}", |
|
"a photo of a nice {}", |
|
"a good photo of a {}", |
|
"a photo of the nice {}", |
|
"a photo of the small {}", |
|
"a photo of the weird {}", |
|
"a photo of the large {}", |
|
"a photo of a cool {}", |
|
"a photo of a small {}", |
|
] |
|
|
|
imagenet_style_templates_small = [ |
|
"a painting in the style of {}", |
|
"a rendering in the style of {}", |
|
"a cropped painting in the style of {}", |
|
"the painting in the style of {}", |
|
"a clean painting in the style of {}", |
|
"a dirty painting in the style of {}", |
|
"a dark painting in the style of {}", |
|
"a picture in the style of {}", |
|
"a cool painting in the style of {}", |
|
"a close-up painting in the style of {}", |
|
"a bright painting in the style of {}", |
|
"a cropped painting in the style of {}", |
|
"a good painting in the style of {}", |
|
"a close-up painting in the style of {}", |
|
"a rendition in the style of {}", |
|
"a nice painting in the style of {}", |
|
"a small painting in the style of {}", |
|
"a weird painting in the style of {}", |
|
"a large painting in the style of {}", |
|
] |
|
|
|
|
|
class TextualInversionDataset(Dataset): |
|
def __init__( |
|
self, |
|
data_root, |
|
tokenizer, |
|
learnable_property="object", |
|
size=512, |
|
repeats=100, |
|
interpolation="bicubic", |
|
flip_p=0.5, |
|
set="train", |
|
placeholder_token="*", |
|
center_crop=False, |
|
): |
|
self.data_root = data_root |
|
self.tokenizer = tokenizer |
|
self.learnable_property = learnable_property |
|
self.size = size |
|
self.placeholder_token = placeholder_token |
|
self.center_crop = center_crop |
|
self.flip_p = flip_p |
|
|
|
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] |
|
|
|
self.num_images = len(self.image_paths) |
|
self._length = self.num_images |
|
|
|
if set == "train": |
|
self._length = self.num_images * repeats |
|
|
|
self.interpolation = { |
|
"linear": PIL_INTERPOLATION["linear"], |
|
"bilinear": PIL_INTERPOLATION["bilinear"], |
|
"bicubic": PIL_INTERPOLATION["bicubic"], |
|
"lanczos": PIL_INTERPOLATION["lanczos"], |
|
}[interpolation] |
|
|
|
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small |
|
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, i): |
|
example = {} |
|
image = Image.open(self.image_paths[i % self.num_images]) |
|
|
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
|
|
placeholder_string = self.placeholder_token |
|
text = random.choice(self.templates).format(placeholder_string) |
|
|
|
example["input_ids"] = self.tokenizer( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids[0] |
|
|
|
|
|
img = np.array(image).astype(np.uint8) |
|
|
|
if self.center_crop: |
|
crop = min(img.shape[0], img.shape[1]) |
|
( |
|
h, |
|
w, |
|
) = ( |
|
img.shape[0], |
|
img.shape[1], |
|
) |
|
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] |
|
|
|
image = Image.fromarray(img) |
|
image = image.resize((self.size, self.size), resample=self.interpolation) |
|
|
|
image = self.flip_transform(image) |
|
image = np.array(image).astype(np.uint8) |
|
image = (image / 127.5 - 1.0).astype(np.float32) |
|
|
|
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) |
|
return example |
|
|
|
|
|
def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng): |
|
if model.config.vocab_size == new_num_tokens or new_num_tokens is None: |
|
return |
|
model.config.vocab_size = new_num_tokens |
|
|
|
params = model.params |
|
old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"] |
|
old_num_tokens, emb_dim = old_embeddings.shape |
|
|
|
initializer = jax.nn.initializers.normal() |
|
|
|
new_embeddings = initializer(rng, (new_num_tokens, emb_dim)) |
|
new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings) |
|
new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id]) |
|
params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings |
|
|
|
model.params = params |
|
return model |
|
|
|
|
|
def get_params_to_save(params): |
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
if jax.process_index() == 0: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") |
|
|
|
|
|
num_added_tokens = tokenizer.add_tokens(args.placeholder_token) |
|
if num_added_tokens == 0: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" |
|
" `placeholder_token` that is not already in the tokenizer." |
|
) |
|
|
|
|
|
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) |
|
|
|
if len(token_ids) > 1: |
|
raise ValueError("The initializer token must be a single token.") |
|
|
|
initializer_token_id = token_ids[0] |
|
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) |
|
|
|
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision |
|
) |
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(args.seed) |
|
rng, _ = jax.random.split(rng) |
|
|
|
text_encoder = resize_token_embeddings( |
|
text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng |
|
) |
|
original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"] |
|
|
|
train_dataset = TextualInversionDataset( |
|
data_root=args.train_data_dir, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
placeholder_token=args.placeholder_token, |
|
repeats=args.repeats, |
|
learnable_property=args.learnable_property, |
|
center_crop=args.center_crop, |
|
set="train", |
|
) |
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
input_ids = torch.stack([example["input_ids"] for example in examples]) |
|
|
|
batch = {"pixel_values": pixel_values, "input_ids": input_ids} |
|
batch = {k: v.numpy() for k, v in batch.items()} |
|
|
|
return batch |
|
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count() |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn |
|
) |
|
|
|
|
|
if args.scale_lr: |
|
args.learning_rate = args.learning_rate * total_train_batch_size |
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate) |
|
|
|
optimizer = optax.adamw( |
|
learning_rate=constant_scheduler, |
|
b1=args.adam_beta1, |
|
b2=args.adam_beta2, |
|
eps=args.adam_epsilon, |
|
weight_decay=args.adam_weight_decay, |
|
) |
|
|
|
def create_mask(params, label_fn): |
|
def _map(params, mask, label_fn): |
|
for k in params: |
|
if label_fn(k): |
|
mask[k] = "token_embedding" |
|
else: |
|
if isinstance(params[k], dict): |
|
mask[k] = {} |
|
_map(params[k], mask[k], label_fn) |
|
else: |
|
mask[k] = "zero" |
|
|
|
mask = {} |
|
_map(params, mask, label_fn) |
|
return mask |
|
|
|
def zero_grads(): |
|
|
|
def init_fn(_): |
|
return () |
|
|
|
def update_fn(updates, state, params=None): |
|
return jax.tree_util.tree_map(jnp.zeros_like, updates), () |
|
|
|
return optax.GradientTransformation(init_fn, update_fn) |
|
|
|
|
|
tx = optax.multi_transform( |
|
{"token_embedding": optimizer, "zero": zero_grads()}, |
|
create_mask(text_encoder.params, lambda s: s == "token_embedding"), |
|
) |
|
|
|
state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx) |
|
|
|
noise_scheduler = FlaxDDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 |
|
) |
|
noise_scheduler_state = noise_scheduler.create_state() |
|
|
|
|
|
train_rngs = jax.random.split(rng, jax.local_device_count()) |
|
|
|
|
|
def train_step(state, vae_params, unet_params, batch, train_rng): |
|
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) |
|
|
|
def compute_loss(params): |
|
vae_outputs = vae.apply( |
|
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode |
|
) |
|
latents = vae_outputs.latent_dist.sample(sample_rng) |
|
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2)) |
|
latents = latents * vae.config.scaling_factor |
|
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng) |
|
noise = jax.random.normal(noise_rng, latents.shape) |
|
bsz = latents.shape[0] |
|
timesteps = jax.random.randint( |
|
timestep_rng, |
|
(bsz,), |
|
0, |
|
noise_scheduler.config.num_train_timesteps, |
|
) |
|
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) |
|
encoder_hidden_states = state.apply_fn( |
|
batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True |
|
)[0] |
|
|
|
model_pred = unet.apply( |
|
{"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False |
|
).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
loss = (target - model_pred) ** 2 |
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
new_state = state.apply_gradients(grads=grad) |
|
|
|
|
|
|
|
token_embeds = original_token_embeds.at[placeholder_token_id].set( |
|
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id] |
|
) |
|
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds |
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
return new_state, metrics, new_train_rng |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
|
|
|
|
state = jax_utils.replicate(state) |
|
vae_params = jax_utils.replicate(vae_params) |
|
unet_params = jax_utils.replicate(unet_params) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) |
|
|
|
|
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
global_step = 0 |
|
|
|
epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0) |
|
for epoch in epochs: |
|
|
|
|
|
train_metrics = [] |
|
|
|
steps_per_epoch = len(train_dataset) // total_train_batch_size |
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) |
|
|
|
for batch in train_dataloader: |
|
batch = shard(batch) |
|
state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs) |
|
train_metrics.append(train_metric) |
|
|
|
train_step_progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
if global_step % args.save_steps == 0: |
|
learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"][ |
|
"embedding" |
|
][placeholder_token_id] |
|
learned_embeds_dict = {args.placeholder_token: learned_embeds} |
|
jnp.save( |
|
os.path.join(args.output_dir, "learned_embeds-" + str(global_step) + ".npy"), learned_embeds_dict |
|
) |
|
|
|
train_metric = jax_utils.unreplicate(train_metric) |
|
|
|
train_step_progress_bar.close() |
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") |
|
|
|
|
|
if jax.process_index() == 0: |
|
scheduler = FlaxPNDMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True |
|
) |
|
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( |
|
"CompVis/stable-diffusion-safety-checker", from_pt=True |
|
) |
|
pipeline = FlaxStableDiffusionPipeline( |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
unet=unet, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), |
|
) |
|
|
|
pipeline.save_pretrained( |
|
args.output_dir, |
|
params={ |
|
"text_encoder": get_params_to_save(state.params), |
|
"vae": get_params_to_save(vae_params), |
|
"unet": get_params_to_save(unet_params), |
|
"safety_checker": safety_checker.params, |
|
}, |
|
) |
|
|
|
|
|
learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][ |
|
placeholder_token_id |
|
] |
|
learned_embeds_dict = {args.placeholder_token: learned_embeds} |
|
jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict) |
|
|
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|