|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
|
|
from ....models import UNet2DModel |
|
from ....schedulers import RePaintScheduler |
|
from ....utils import PIL_INTERPOLATION, deprecate, logging |
|
from ....utils.torch_utils import randn_tensor |
|
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]): |
|
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead" |
|
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False) |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
w, h = image[0].size |
|
w, h = (x - x % 8 for x in (w, h)) |
|
|
|
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
|
|
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]): |
|
if isinstance(mask, torch.Tensor): |
|
return mask |
|
elif isinstance(mask, PIL.Image.Image): |
|
mask = [mask] |
|
|
|
if isinstance(mask[0], PIL.Image.Image): |
|
w, h = mask[0].size |
|
w, h = (x - x % 32 for x in (w, h)) |
|
mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask] |
|
mask = np.concatenate(mask, axis=0) |
|
mask = mask.astype(np.float32) / 255.0 |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
elif isinstance(mask[0], torch.Tensor): |
|
mask = torch.cat(mask, dim=0) |
|
return mask |
|
|
|
|
|
class RePaintPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for image inpainting using RePaint. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Parameters: |
|
unet ([`UNet2DModel`]): |
|
A `UNet2DModel` to denoise the encoded image latents. |
|
scheduler ([`RePaintScheduler`]): |
|
A `RePaintScheduler` to be used in combination with `unet` to denoise the encoded image. |
|
""" |
|
|
|
unet: UNet2DModel |
|
scheduler: RePaintScheduler |
|
model_cpu_offload_seq = "unet" |
|
|
|
def __init__(self, unet, scheduler): |
|
super().__init__() |
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[torch.Tensor, PIL.Image.Image], |
|
mask_image: Union[torch.Tensor, PIL.Image.Image], |
|
num_inference_steps: int = 250, |
|
eta: float = 0.0, |
|
jump_length: int = 10, |
|
jump_n_sample: int = 10, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`torch.Tensor` or `PIL.Image.Image`): |
|
The original image to inpaint on. |
|
mask_image (`torch.Tensor` or `PIL.Image.Image`): |
|
The mask_image where 0.0 define which part of the original image to inpaint. |
|
num_inference_steps (`int`, *optional*, defaults to 1000): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
eta (`float`): |
|
The weight of the added noise in a diffusion step. Its value is between 0.0 and 1.0; 0.0 corresponds to |
|
DDIM and 1.0 is the DDPM scheduler. |
|
jump_length (`int`, *optional*, defaults to 10): |
|
The number of steps taken forward in time before going backward in time for a single jump ("j" in |
|
RePaint paper). Take a look at Figure 9 and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf). |
|
jump_n_sample (`int`, *optional*, defaults to 10): |
|
The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9 |
|
and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf). |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
output_type (`str`, `optional`, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from io import BytesIO |
|
>>> import torch |
|
>>> import PIL |
|
>>> import requests |
|
>>> from diffusers import RePaintPipeline, RePaintScheduler |
|
|
|
|
|
>>> def download_image(url): |
|
... response = requests.get(url) |
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
>>> img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png" |
|
>>> mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" |
|
|
|
>>> # Load the original image and the mask as PIL images |
|
>>> original_image = download_image(img_url).resize((256, 256)) |
|
>>> mask_image = download_image(mask_url).resize((256, 256)) |
|
|
|
>>> # Load the RePaint scheduler and pipeline based on a pretrained DDPM model |
|
>>> scheduler = RePaintScheduler.from_pretrained("google/ddpm-ema-celebahq-256") |
|
>>> pipe = RePaintPipeline.from_pretrained("google/ddpm-ema-celebahq-256", scheduler=scheduler) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(0) |
|
>>> output = pipe( |
|
... image=original_image, |
|
... mask_image=mask_image, |
|
... num_inference_steps=250, |
|
... eta=0.0, |
|
... jump_length=10, |
|
... jump_n_sample=10, |
|
... generator=generator, |
|
... ) |
|
>>> inpainted_image = output.images[0] |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
|
|
original_image = image |
|
|
|
original_image = _preprocess_image(original_image) |
|
original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype) |
|
mask_image = _preprocess_mask(mask_image) |
|
mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype) |
|
|
|
batch_size = original_image.shape[0] |
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
image_shape = original_image.shape |
|
image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device) |
|
self.scheduler.eta = eta |
|
|
|
t_last = self.scheduler.timesteps[0] + 1 |
|
generator = generator[0] if isinstance(generator, list) else generator |
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): |
|
if t < t_last: |
|
|
|
model_output = self.unet(image, t).sample |
|
|
|
image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample |
|
|
|
else: |
|
|
|
image = self.scheduler.undo_step(image, t_last, generator) |
|
t_last = t |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|