|
from typing import TYPE_CHECKING |
|
|
|
from ....utils import ( |
|
DIFFUSERS_SLOW_IMPORT, |
|
OptionalDependencyNotAvailable, |
|
_LazyModule, |
|
is_torch_available, |
|
is_transformers_available, |
|
) |
|
|
|
|
|
_dummy_objects = {} |
|
_import_structure = {} |
|
|
|
try: |
|
if not (is_transformers_available() and is_torch_available()): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
from ....utils.dummy_torch_and_transformers_objects import ( |
|
LearnedClassifierFreeSamplingEmbeddings, |
|
VQDiffusionPipeline, |
|
) |
|
|
|
_dummy_objects.update( |
|
{ |
|
"LearnedClassifierFreeSamplingEmbeddings": LearnedClassifierFreeSamplingEmbeddings, |
|
"VQDiffusionPipeline": VQDiffusionPipeline, |
|
} |
|
) |
|
else: |
|
_import_structure["pipeline_vq_diffusion"] = ["LearnedClassifierFreeSamplingEmbeddings", "VQDiffusionPipeline"] |
|
|
|
|
|
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: |
|
try: |
|
if not (is_transformers_available() and is_torch_available()): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
from ....utils.dummy_torch_and_transformers_objects import ( |
|
LearnedClassifierFreeSamplingEmbeddings, |
|
VQDiffusionPipeline, |
|
) |
|
else: |
|
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline |
|
|
|
else: |
|
import sys |
|
|
|
sys.modules[__name__] = _LazyModule( |
|
__name__, |
|
globals()["__file__"], |
|
_import_structure, |
|
module_spec=__spec__, |
|
) |
|
|
|
for name, value in _dummy_objects.items(): |
|
setattr(sys.modules[__name__], name, value) |
|
|