|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import PIL.Image |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from ...models import PriorTransformer |
|
from ...schedulers import UnCLIPScheduler |
|
from ...utils import ( |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..kandinsky import KandinskyPriorPipelineOutput |
|
from ..pipeline_utils import DiffusionPipeline |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline |
|
>>> import torch |
|
|
|
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") |
|
>>> pipe_prior.to("cuda") |
|
>>> prompt = "red cat, 4k photo" |
|
>>> image_emb, negative_image_emb = pipe_prior(prompt).to_tuple() |
|
|
|
>>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") |
|
>>> pipe.to("cuda") |
|
>>> image = pipe( |
|
... image_embeds=image_emb, |
|
... negative_image_embeds=negative_image_emb, |
|
... height=768, |
|
... width=768, |
|
... num_inference_steps=50, |
|
... ).images |
|
>>> image[0].save("cat.png") |
|
``` |
|
""" |
|
|
|
EXAMPLE_INTERPOLATE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline |
|
>>> from diffusers.utils import load_image |
|
>>> import PIL |
|
>>> import torch |
|
>>> from torchvision import transforms |
|
|
|
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( |
|
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe_prior.to("cuda") |
|
>>> img1 = load_image( |
|
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
... "/kandinsky/cat.png" |
|
... ) |
|
>>> img2 = load_image( |
|
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
... "/kandinsky/starry_night.jpeg" |
|
... ) |
|
>>> images_texts = ["a cat", img1, img2] |
|
>>> weights = [0.3, 0.3, 0.4] |
|
>>> out = pipe_prior.interpolate(images_texts, weights) |
|
>>> pipe = KandinskyV22Pipeline.from_pretrained( |
|
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.to("cuda") |
|
>>> image = pipe( |
|
... image_embeds=out.image_embeds, |
|
... negative_image_embeds=out.negative_image_embeds, |
|
... height=768, |
|
... width=768, |
|
... num_inference_steps=50, |
|
... ).images[0] |
|
>>> image.save("starry_cat.png") |
|
``` |
|
""" |
|
|
|
|
|
class KandinskyV22PriorPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for generating image prior for Kandinsky |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
prior ([`PriorTransformer`]): |
|
The canonical unCLIP prior to approximate the image embedding from the text embedding. |
|
image_encoder ([`CLIPVisionModelWithProjection`]): |
|
Frozen image-encoder. |
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
Frozen text-encoder. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
scheduler ([`UnCLIPScheduler`]): |
|
A scheduler to be used in combination with `prior` to generate image embedding. |
|
image_processor ([`CLIPImageProcessor`]): |
|
A image_processor to be used to preprocess image from clip. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->prior" |
|
_exclude_from_cpu_offload = ["prior"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "text_encoder_hidden_states", "text_mask"] |
|
|
|
def __init__( |
|
self, |
|
prior: PriorTransformer, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
text_encoder: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
scheduler: UnCLIPScheduler, |
|
image_processor: CLIPImageProcessor, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
prior=prior, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
image_encoder=image_encoder, |
|
image_processor=image_processor, |
|
) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) |
|
def interpolate( |
|
self, |
|
images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]], |
|
weights: List[float], |
|
num_images_per_prompt: int = 1, |
|
num_inference_steps: int = 25, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
negative_prior_prompt: Optional[str] = None, |
|
negative_prompt: str = "", |
|
guidance_scale: float = 4.0, |
|
device=None, |
|
): |
|
""" |
|
Function invoked when using the prior pipeline for interpolation. |
|
|
|
Args: |
|
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`): |
|
list of prompts and images to guide the image generation. |
|
weights: (`List[float]`): |
|
list of weights for each condition in `images_and_prompts` |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
negative_prior_prompt (`str`, *optional*): |
|
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if |
|
`guidance_scale` is less than `1`). |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if |
|
`guidance_scale` is less than `1`). |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`KandinskyPriorPipelineOutput`] or `tuple` |
|
""" |
|
|
|
device = device or self.device |
|
|
|
if len(images_and_prompts) != len(weights): |
|
raise ValueError( |
|
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length" |
|
) |
|
|
|
image_embeddings = [] |
|
for cond, weight in zip(images_and_prompts, weights): |
|
if isinstance(cond, str): |
|
image_emb = self( |
|
cond, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images_per_prompt, |
|
generator=generator, |
|
latents=latents, |
|
negative_prompt=negative_prior_prompt, |
|
guidance_scale=guidance_scale, |
|
).image_embeds.unsqueeze(0) |
|
|
|
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): |
|
if isinstance(cond, PIL.Image.Image): |
|
cond = ( |
|
self.image_processor(cond, return_tensors="pt") |
|
.pixel_values[0] |
|
.unsqueeze(0) |
|
.to(dtype=self.image_encoder.dtype, device=device) |
|
) |
|
|
|
image_emb = self.image_encoder(cond)["image_embeds"].repeat(num_images_per_prompt, 1).unsqueeze(0) |
|
|
|
else: |
|
raise ValueError( |
|
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}" |
|
) |
|
|
|
image_embeddings.append(image_emb * weight) |
|
|
|
image_emb = torch.cat(image_embeddings).sum(dim=0) |
|
|
|
out_zero = self( |
|
negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images_per_prompt, |
|
generator=generator, |
|
latents=latents, |
|
negative_prompt=negative_prior_prompt, |
|
guidance_scale=guidance_scale, |
|
) |
|
zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds |
|
|
|
return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def get_zero_embed(self, batch_size=1, device=None): |
|
device = device or self.device |
|
zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to( |
|
device=device, dtype=self.image_encoder.dtype |
|
) |
|
zero_image_emb = self.image_encoder(zero_img)["image_embeds"] |
|
zero_image_emb = zero_image_emb.repeat(batch_size, 1) |
|
return zero_image_emb |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
|
|
text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
|
prompt_embeds = text_encoder_output.text_embeds |
|
text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds |
|
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, text_encoder_hidden_states, text_mask |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: int = 1, |
|
num_inference_steps: int = 25, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
guidance_scale: float = 4.0, |
|
output_type: Optional[str] = "pt", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
output_type (`str`, *optional*, defaults to `"pt"`): |
|
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` |
|
(`torch.Tensor`). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`KandinskyPriorPipelineOutput`] or `tuple` |
|
""" |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
elif not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt] |
|
elif not isinstance(negative_prompt, list) and negative_prompt is not None: |
|
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") |
|
|
|
|
|
|
|
if negative_prompt is not None: |
|
prompt = prompt + negative_prompt |
|
negative_prompt = 2 * negative_prompt |
|
|
|
device = self._execution_device |
|
|
|
batch_size = len(prompt) |
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( |
|
prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
embedding_dim = self.prior.config.embedding_dim |
|
|
|
latents = self.prepare_latents( |
|
(batch_size, embedding_dim), |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
self.scheduler, |
|
) |
|
self._num_timesteps = len(timesteps) |
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
predicted_image_embedding = self.prior( |
|
latent_model_input, |
|
timestep=t, |
|
proj_embedding=prompt_embeds, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
attention_mask=text_mask, |
|
).predicted_image_embedding |
|
|
|
if self.do_classifier_free_guidance: |
|
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) |
|
predicted_image_embedding = predicted_image_embedding_uncond + self.guidance_scale * ( |
|
predicted_image_embedding_text - predicted_image_embedding_uncond |
|
) |
|
|
|
if i + 1 == timesteps.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = timesteps[i + 1] |
|
|
|
latents = self.scheduler.step( |
|
predicted_image_embedding, |
|
timestep=t, |
|
sample=latents, |
|
generator=generator, |
|
prev_timestep=prev_timestep, |
|
).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
text_encoder_hidden_states = callback_outputs.pop( |
|
"text_encoder_hidden_states", text_encoder_hidden_states |
|
) |
|
text_mask = callback_outputs.pop("text_mask", text_mask) |
|
|
|
latents = self.prior.post_process_latents(latents) |
|
|
|
image_embeddings = latents |
|
|
|
|
|
if negative_prompt is None: |
|
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) |
|
else: |
|
image_embeddings, zero_embeds = image_embeddings.chunk(2) |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if output_type not in ["pt", "np"]: |
|
raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}") |
|
|
|
if output_type == "np": |
|
image_embeddings = image_embeddings.cpu().numpy() |
|
zero_embeds = zero_embeds.cpu().numpy() |
|
|
|
if not return_dict: |
|
return (image_embeddings, zero_embeds) |
|
|
|
return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds) |
|
|