|
from dataclasses import dataclass |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
|
|
from ...utils import BaseOutput |
|
|
|
|
|
@dataclass |
|
class LEditsPPDiffusionPipelineOutput(BaseOutput): |
|
""" |
|
Output class for LEdits++ Diffusion pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, |
|
num_channels)`. |
|
nsfw_content_detected (`List[bool]`) |
|
List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or |
|
`None` if safety checking could not be performed. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
nsfw_content_detected: Optional[List[bool]] |
|
|
|
|
|
@dataclass |
|
class LEditsPPInversionPipelineOutput(BaseOutput): |
|
""" |
|
Output class for LEdits++ Diffusion pipelines. |
|
|
|
Args: |
|
input_images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape ` |
|
(batch_size, height, width, num_channels)`. |
|
vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape |
|
` (batch_size, height, width, num_channels)`. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray] |
|
|