|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
from transformers import CLIPTextModelWithProjection, CLIPTokenizer |
|
from transformers.models.clip.modeling_clip import CLIPTextModelOutput |
|
|
|
from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel |
|
from ...schedulers import UnCLIPScheduler |
|
from ...utils import logging |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from .text_proj import UnCLIPTextProjModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class UnCLIPPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for text-to-image generation using unCLIP. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
text_encoder ([`~transformers.CLIPTextModelWithProjection`]): |
|
Frozen text-encoder. |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
prior ([`PriorTransformer`]): |
|
The canonical unCLIP prior to approximate the image embedding from the text embedding. |
|
text_proj ([`UnCLIPTextProjModel`]): |
|
Utility class to prepare and combine the embeddings before they are passed to the decoder. |
|
decoder ([`UNet2DConditionModel`]): |
|
The decoder to invert the image embedding into an image. |
|
super_res_first ([`UNet2DModel`]): |
|
Super resolution UNet. Used in all but the last step of the super resolution diffusion process. |
|
super_res_last ([`UNet2DModel`]): |
|
Super resolution UNet. Used in the last step of the super resolution diffusion process. |
|
prior_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the prior denoising process (a modified [`DDPMScheduler`]). |
|
decoder_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the decoder denoising process (a modified [`DDPMScheduler`]). |
|
super_res_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the super resolution denoising process (a modified [`DDPMScheduler`]). |
|
|
|
""" |
|
|
|
_exclude_from_cpu_offload = ["prior"] |
|
|
|
prior: PriorTransformer |
|
decoder: UNet2DConditionModel |
|
text_proj: UnCLIPTextProjModel |
|
text_encoder: CLIPTextModelWithProjection |
|
tokenizer: CLIPTokenizer |
|
super_res_first: UNet2DModel |
|
super_res_last: UNet2DModel |
|
|
|
prior_scheduler: UnCLIPScheduler |
|
decoder_scheduler: UnCLIPScheduler |
|
super_res_scheduler: UnCLIPScheduler |
|
|
|
model_cpu_offload_seq = "text_encoder->text_proj->decoder->super_res_first->super_res_last" |
|
|
|
def __init__( |
|
self, |
|
prior: PriorTransformer, |
|
decoder: UNet2DConditionModel, |
|
text_encoder: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
text_proj: UnCLIPTextProjModel, |
|
super_res_first: UNet2DModel, |
|
super_res_last: UNet2DModel, |
|
prior_scheduler: UnCLIPScheduler, |
|
decoder_scheduler: UnCLIPScheduler, |
|
super_res_scheduler: UnCLIPScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
prior=prior, |
|
decoder=decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
text_proj=text_proj, |
|
super_res_first=super_res_first, |
|
super_res_last=super_res_last, |
|
prior_scheduler=prior_scheduler, |
|
decoder_scheduler=decoder_scheduler, |
|
super_res_scheduler=super_res_scheduler, |
|
) |
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
|
text_attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if text_model_output is None: |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
|
|
text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
|
prompt_embeds = text_encoder_output.text_embeds |
|
text_enc_hid_states = text_encoder_output.last_hidden_state |
|
|
|
else: |
|
batch_size = text_model_output[0].shape[0] |
|
prompt_embeds, text_enc_hid_states = text_model_output[0], text_model_output[1] |
|
text_mask = text_attention_mask |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_enc_hid_states = text_enc_hid_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] * batch_size |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds |
|
uncond_text_enc_hid_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_enc_hid_states.shape[1] |
|
uncond_text_enc_hid_states = uncond_text_enc_hid_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_enc_hid_states = uncond_text_enc_hid_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
text_enc_hid_states = torch.cat([uncond_text_enc_hid_states, text_enc_hid_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, text_enc_hid_states, text_mask |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: int = 1, |
|
prior_num_inference_steps: int = 25, |
|
decoder_num_inference_steps: int = 25, |
|
super_res_num_inference_steps: int = 7, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prior_latents: Optional[torch.Tensor] = None, |
|
decoder_latents: Optional[torch.Tensor] = None, |
|
super_res_latents: Optional[torch.Tensor] = None, |
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
|
text_attention_mask: Optional[torch.Tensor] = None, |
|
prior_guidance_scale: float = 4.0, |
|
decoder_guidance_scale: float = 8.0, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide image generation. This can only be left undefined if `text_model_output` |
|
and `text_attention_mask` is passed. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
prior_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps for the prior. More denoising steps usually lead to a higher quality |
|
image at the expense of slower inference. |
|
decoder_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality |
|
image at the expense of slower inference. |
|
super_res_num_inference_steps (`int`, *optional*, defaults to 7): |
|
The number of denoising steps for super resolution. More denoising steps usually lead to a higher |
|
quality image at the expense of slower inference. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
prior_latents (`torch.Tensor` of shape (batch size, embeddings dimension), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the prior. |
|
decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the decoder. |
|
super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*): |
|
Pre-generated noisy latents to be used as inputs for the decoder. |
|
prior_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
text_model_output (`CLIPTextModelOutput`, *optional*): |
|
Pre-defined [`CLIPTextModel`] outputs that can be derived from the text encoder. Pre-defined text |
|
outputs can be passed for tasks like text embedding interpolations. Make sure to also pass |
|
`text_attention_mask` in this case. `prompt` can the be left `None`. |
|
text_attention_mask (`torch.Tensor`, *optional*): |
|
Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention |
|
masks are necessary when passing `text_model_output`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
if prompt is not None: |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
else: |
|
batch_size = text_model_output[0].shape[0] |
|
|
|
device = self._execution_device |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 |
|
|
|
prompt_embeds, text_enc_hid_states, text_mask = self._encode_prompt( |
|
prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask |
|
) |
|
|
|
|
|
|
|
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) |
|
prior_timesteps_tensor = self.prior_scheduler.timesteps |
|
|
|
embedding_dim = self.prior.config.embedding_dim |
|
|
|
prior_latents = self.prepare_latents( |
|
(batch_size, embedding_dim), |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
prior_latents, |
|
self.prior_scheduler, |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents |
|
|
|
predicted_image_embedding = self.prior( |
|
latent_model_input, |
|
timestep=t, |
|
proj_embedding=prompt_embeds, |
|
encoder_hidden_states=text_enc_hid_states, |
|
attention_mask=text_mask, |
|
).predicted_image_embedding |
|
|
|
if do_classifier_free_guidance: |
|
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) |
|
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( |
|
predicted_image_embedding_text - predicted_image_embedding_uncond |
|
) |
|
|
|
if i + 1 == prior_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = prior_timesteps_tensor[i + 1] |
|
|
|
prior_latents = self.prior_scheduler.step( |
|
predicted_image_embedding, |
|
timestep=t, |
|
sample=prior_latents, |
|
generator=generator, |
|
prev_timestep=prev_timestep, |
|
).prev_sample |
|
|
|
prior_latents = self.prior.post_process_latents(prior_latents) |
|
|
|
image_embeddings = prior_latents |
|
|
|
|
|
|
|
|
|
|
|
text_enc_hid_states, additive_clip_time_embeddings = self.text_proj( |
|
image_embeddings=image_embeddings, |
|
prompt_embeds=prompt_embeds, |
|
text_encoder_hidden_states=text_enc_hid_states, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
|
|
text_mask = text_mask.type(torch.int) |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) |
|
decoder_text_mask = decoder_text_mask.type(torch.bool) |
|
else: |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) |
|
|
|
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) |
|
decoder_timesteps_tensor = self.decoder_scheduler.timesteps |
|
|
|
num_channels_latents = self.decoder.config.in_channels |
|
height = self.decoder.config.sample_size |
|
width = self.decoder.config.sample_size |
|
|
|
decoder_latents = self.prepare_latents( |
|
(batch_size, num_channels_latents, height, width), |
|
text_enc_hid_states.dtype, |
|
device, |
|
generator, |
|
decoder_latents, |
|
self.decoder_scheduler, |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents |
|
|
|
noise_pred = self.decoder( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=text_enc_hid_states, |
|
class_labels=additive_clip_time_embeddings, |
|
attention_mask=decoder_text_mask, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) |
|
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) |
|
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) |
|
|
|
if i + 1 == decoder_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = decoder_timesteps_tensor[i + 1] |
|
|
|
|
|
decoder_latents = self.decoder_scheduler.step( |
|
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
decoder_latents = decoder_latents.clamp(-1, 1) |
|
|
|
image_small = decoder_latents |
|
|
|
|
|
|
|
|
|
|
|
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) |
|
super_res_timesteps_tensor = self.super_res_scheduler.timesteps |
|
|
|
channels = self.super_res_first.config.in_channels // 2 |
|
height = self.super_res_first.config.sample_size |
|
width = self.super_res_first.config.sample_size |
|
|
|
super_res_latents = self.prepare_latents( |
|
(batch_size, channels, height, width), |
|
image_small.dtype, |
|
device, |
|
generator, |
|
super_res_latents, |
|
self.super_res_scheduler, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
image_upscaled = F.interpolate(image_small, size=[height, width]) |
|
else: |
|
interpolate_antialias = {} |
|
if "antialias" in inspect.signature(F.interpolate).parameters: |
|
interpolate_antialias["antialias"] = True |
|
|
|
image_upscaled = F.interpolate( |
|
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): |
|
|
|
|
|
if i == super_res_timesteps_tensor.shape[0] - 1: |
|
unet = self.super_res_last |
|
else: |
|
unet = self.super_res_first |
|
|
|
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) |
|
|
|
noise_pred = unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
).sample |
|
|
|
if i + 1 == super_res_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = super_res_timesteps_tensor[i + 1] |
|
|
|
|
|
super_res_latents = self.super_res_scheduler.step( |
|
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
image = super_res_latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|