svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
14.1 kB
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPT2Config, GPT2LMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
# Modified from ClipCaptionModel in https://github.com/thu-ml/unidiffuser/blob/main/libs/caption_decoder.py
class UniDiffuserTextDecoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
"""
Text decoder model for a image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model. This is used to
generate text from the UniDiffuser image-text embedding.
Parameters:
prefix_length (`int`):
Max number of prefix tokens that will be supplied to the model.
prefix_inner_dim (`int`):
The hidden size of the incoming prefix embeddings. For UniDiffuser, this would be the hidden dim of the
CLIP text encoder.
prefix_hidden_dim (`int`, *optional*):
Hidden dim of the MLP if we encode the prefix.
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
"""
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__(
self,
prefix_length: int,
prefix_inner_dim: int,
prefix_hidden_dim: Optional[int] = None,
vocab_size: int = 50257, # Start of GPT2 config args
n_positions: int = 1024,
n_embd: int = 768,
n_layer: int = 12,
n_head: int = 12,
n_inner: Optional[int] = None,
activation_function: str = "gelu_new",
resid_pdrop: float = 0.1,
embd_pdrop: float = 0.1,
attn_pdrop: float = 0.1,
layer_norm_epsilon: float = 1e-5,
initializer_range: float = 0.02,
scale_attn_weights: bool = True,
use_cache: bool = True,
scale_attn_by_inverse_layer_idx: bool = False,
reorder_and_upcast_attn: bool = False,
):
super().__init__()
self.prefix_length = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and"
f" `n_embd`: {n_embd} are not equal."
)
self.prefix_inner_dim = prefix_inner_dim
self.prefix_hidden_dim = prefix_hidden_dim
self.encode_prefix = (
nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim)
if self.prefix_hidden_dim is not None
else nn.Identity()
)
self.decode_prefix = (
nn.Linear(self.prefix_hidden_dim, n_embd) if self.prefix_hidden_dim is not None else nn.Identity()
)
gpt_config = GPT2Config(
vocab_size=vocab_size,
n_positions=n_positions,
n_embd=n_embd,
n_layer=n_layer,
n_head=n_head,
n_inner=n_inner,
activation_function=activation_function,
resid_pdrop=resid_pdrop,
embd_pdrop=embd_pdrop,
attn_pdrop=attn_pdrop,
layer_norm_epsilon=layer_norm_epsilon,
initializer_range=initializer_range,
scale_attn_weights=scale_attn_weights,
use_cache=use_cache,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
self.transformer = GPT2LMHeadModel(gpt_config)
def forward(
self,
input_ids: torch.Tensor,
prefix_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
):
"""
Args:
input_ids (`torch.Tensor` of shape `(N, max_seq_len)`):
Text tokens to use for inference.
prefix_embeds (`torch.Tensor` of shape `(N, prefix_length, 768)`):
Prefix embedding to preprend to the embedded tokens.
attention_mask (`torch.Tensor` of shape `(N, prefix_length + max_seq_len, 768)`, *optional*):
Attention mask for the prefix embedding.
labels (`torch.Tensor`, *optional*):
Labels to use for language modeling.
"""
embedding_text = self.transformer.transformer.wte(input_ids)
hidden = self.encode_prefix(prefix_embeds)
prefix_embeds = self.decode_prefix(hidden)
embedding_cat = torch.cat((prefix_embeds, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(input_ids.shape[0], input_ids.device)
labels = torch.cat((dummy_token, input_ids), dim=1)
out = self.transformer(inputs_embeds=embedding_cat, labels=labels, attention_mask=attention_mask)
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def encode(self, prefix):
return self.encode_prefix(prefix)
@torch.no_grad()
def generate_captions(self, features, eos_token_id, device):
"""
Generate captions given text embedding features. Returns list[L].
Args:
features (`torch.Tensor` of shape `(B, L, D)`):
Text embedding features to generate captions from.
eos_token_id (`int`):
The token ID of the EOS token for the text decoder model.
device:
Device to perform text generation on.
Returns:
`List[str]`: A list of strings generated from the decoder model.
"""
features = torch.split(features, 1, dim=0)
generated_tokens = []
generated_seq_lengths = []
for feature in features:
feature = self.decode_prefix(feature.to(device)) # back to the clip feature
# Only support beam search for now
output_tokens, seq_lengths = self.generate_beam(
input_embeds=feature, device=device, eos_token_id=eos_token_id
)
generated_tokens.append(output_tokens[0])
generated_seq_lengths.append(seq_lengths[0])
generated_tokens = torch.stack(generated_tokens)
generated_seq_lengths = torch.stack(generated_seq_lengths)
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def generate_beam(
self,
input_ids=None,
input_embeds=None,
device=None,
beam_size: int = 5,
entry_length: int = 67,
temperature: float = 1.0,
eos_token_id: Optional[int] = None,
):
"""
Generates text using the given tokenizer and text prompt or token embedding via beam search. This
implementation is based on the beam search implementation from the [original UniDiffuser
code](https://github.com/thu-ml/unidiffuser/blob/main/libs/caption_decoder.py#L89).
Args:
eos_token_id (`int`, *optional*):
The token ID of the EOS token for the text decoder model.
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Tokenizer indices of input sequence tokens in the vocabulary. One of `input_ids` and `input_embeds`
must be supplied.
input_embeds (`torch.Tensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
An embedded representation to directly pass to the transformer as a prefix for beam search. One of
`input_ids` and `input_embeds` must be supplied.
device:
The device to perform beam search on.
beam_size (`int`, *optional*, defaults to `5`):
The number of best states to store during beam search.
entry_length (`int`, *optional*, defaults to `67`):
The number of iterations to run beam search.
temperature (`float`, *optional*, defaults to 1.0):
The temperature to use when performing the softmax over logits from the decoding model.
Returns:
`Tuple(torch.Tensor, torch.Tensor)`: A tuple of tensors where the first element is a tensor of generated
token sequences sorted by score in descending order, and the second element is the sequence lengths
corresponding to those sequences.
"""
# Generates text until stop_token is reached using beam search with the desired beam size.
stop_token_index = eos_token_id
tokens = None
scores = None
seq_lengths = torch.ones(beam_size, device=device, dtype=torch.int)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
if input_embeds is not None:
generated = input_embeds
else:
generated = self.transformer.transformer.wte(input_ids)
for i in range(entry_length):
outputs = self.transformer(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
order = scores.argsort(descending=True)
# tokens tensors are already padded to max_seq_length
output_texts = [tokens[i] for i in order]
output_texts = torch.stack(output_texts, dim=0)
seq_lengths = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype)
return output_texts, seq_lengths