|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from ...schedulers import DDPMWuerstchenScheduler |
|
from ...utils import deprecate, replace_example_docstring |
|
from ..pipeline_utils import DiffusionPipeline |
|
from .modeling_paella_vq_model import PaellaVQModel |
|
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt |
|
from .modeling_wuerstchen_prior import WuerstchenPrior |
|
from .pipeline_wuerstchen import WuerstchenDecoderPipeline |
|
from .pipeline_wuerstchen_prior import WuerstchenPriorPipeline |
|
|
|
|
|
TEXT2IMAGE_EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusions import WuerstchenCombinedPipeline |
|
|
|
>>> pipe = WuerstchenCombinedPipeline.from_pretrained("warp-ai/Wuerstchen", torch_dtype=torch.float16).to( |
|
... "cuda" |
|
... ) |
|
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" |
|
>>> images = pipe(prompt=prompt) |
|
``` |
|
""" |
|
|
|
|
|
class WuerstchenCombinedPipeline(DiffusionPipeline): |
|
""" |
|
Combined Pipeline for text-to-image generation using Wuerstchen |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
tokenizer (`CLIPTokenizer`): |
|
The decoder tokenizer to be used for text inputs. |
|
text_encoder (`CLIPTextModel`): |
|
The decoder text encoder to be used for text inputs. |
|
decoder (`WuerstchenDiffNeXt`): |
|
The decoder model to be used for decoder image generation pipeline. |
|
scheduler (`DDPMWuerstchenScheduler`): |
|
The scheduler to be used for decoder image generation pipeline. |
|
vqgan (`PaellaVQModel`): |
|
The VQGAN model to be used for decoder image generation pipeline. |
|
prior_tokenizer (`CLIPTokenizer`): |
|
The prior tokenizer to be used for text inputs. |
|
prior_text_encoder (`CLIPTextModel`): |
|
The prior text encoder to be used for text inputs. |
|
prior_prior (`WuerstchenPrior`): |
|
The prior model to be used for prior pipeline. |
|
prior_scheduler (`DDPMWuerstchenScheduler`): |
|
The scheduler to be used for prior pipeline. |
|
""" |
|
|
|
_load_connected_pipes = True |
|
|
|
def __init__( |
|
self, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder: CLIPTextModel, |
|
decoder: WuerstchenDiffNeXt, |
|
scheduler: DDPMWuerstchenScheduler, |
|
vqgan: PaellaVQModel, |
|
prior_tokenizer: CLIPTokenizer, |
|
prior_text_encoder: CLIPTextModel, |
|
prior_prior: WuerstchenPrior, |
|
prior_scheduler: DDPMWuerstchenScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
decoder=decoder, |
|
scheduler=scheduler, |
|
vqgan=vqgan, |
|
prior_prior=prior_prior, |
|
prior_text_encoder=prior_text_encoder, |
|
prior_tokenizer=prior_tokenizer, |
|
prior_scheduler=prior_scheduler, |
|
) |
|
self.prior_pipe = WuerstchenPriorPipeline( |
|
prior=prior_prior, |
|
text_encoder=prior_text_encoder, |
|
tokenizer=prior_tokenizer, |
|
scheduler=prior_scheduler, |
|
) |
|
self.decoder_pipe = WuerstchenDecoderPipeline( |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
decoder=decoder, |
|
scheduler=scheduler, |
|
vqgan=vqgan, |
|
) |
|
|
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): |
|
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) |
|
|
|
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) |
|
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): |
|
r""" |
|
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 |
|
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a |
|
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. |
|
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) |
|
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) |
|
|
|
def progress_bar(self, iterable=None, total=None): |
|
self.prior_pipe.progress_bar(iterable=iterable, total=total) |
|
self.decoder_pipe.progress_bar(iterable=iterable, total=total) |
|
|
|
def set_progress_bar_config(self, **kwargs): |
|
self.prior_pipe.set_progress_bar_config(**kwargs) |
|
self.decoder_pipe.set_progress_bar_config(**kwargs) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 512, |
|
width: int = 512, |
|
prior_num_inference_steps: int = 60, |
|
prior_timesteps: Optional[List[float]] = None, |
|
prior_guidance_scale: float = 4.0, |
|
num_inference_steps: int = 12, |
|
decoder_timesteps: Optional[List[float]] = None, |
|
decoder_guidance_scale: float = 0.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation for the prior and decoder. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* |
|
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
prior_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`prior_guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting |
|
`prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked |
|
to the text `prompt`, usually at the expense of lower image quality. |
|
prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60): |
|
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. For more specific timestep spacing, you can pass customized |
|
`prior_timesteps` |
|
num_inference_steps (`int`, *optional*, defaults to 12): |
|
The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at |
|
the expense of slower inference. For more specific timestep spacing, you can pass customized |
|
`timesteps` |
|
prior_timesteps (`List[float]`, *optional*): |
|
Custom timesteps to use for the denoising process for the prior. If not defined, equal spaced |
|
`prior_num_inference_steps` timesteps are used. Must be in descending order. |
|
decoder_timesteps (`List[float]`, *optional*): |
|
Custom timesteps to use for the denoising process for the decoder. If not defined, equal spaced |
|
`num_inference_steps` timesteps are used. Must be in descending order. |
|
decoder_guidance_scale (`float`, *optional*, defaults to 0.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`) or `"pt"` (`torch.Tensor`). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
prior_callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: |
|
int, callback_kwargs: Dict)`. |
|
prior_callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the |
|
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in |
|
the `._callback_tensor_inputs` attribute of your pipeline class. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, |
|
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
prior_kwargs = {} |
|
if kwargs.get("prior_callback", None) is not None: |
|
prior_kwargs["callback"] = kwargs.pop("prior_callback") |
|
deprecate( |
|
"prior_callback", |
|
"1.0.0", |
|
"Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", |
|
) |
|
if kwargs.get("prior_callback_steps", None) is not None: |
|
deprecate( |
|
"prior_callback_steps", |
|
"1.0.0", |
|
"Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", |
|
) |
|
prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps") |
|
|
|
prior_outputs = self.prior_pipe( |
|
prompt=prompt if prompt_embeds is None else None, |
|
height=height, |
|
width=width, |
|
num_inference_steps=prior_num_inference_steps, |
|
timesteps=prior_timesteps, |
|
guidance_scale=prior_guidance_scale, |
|
negative_prompt=negative_prompt if negative_prompt_embeds is None else None, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
num_images_per_prompt=num_images_per_prompt, |
|
generator=generator, |
|
latents=latents, |
|
output_type="pt", |
|
return_dict=False, |
|
callback_on_step_end=prior_callback_on_step_end, |
|
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, |
|
**prior_kwargs, |
|
) |
|
image_embeddings = prior_outputs[0] |
|
|
|
outputs = self.decoder_pipe( |
|
image_embeddings=image_embeddings, |
|
prompt=prompt if prompt is not None else "", |
|
num_inference_steps=num_inference_steps, |
|
timesteps=decoder_timesteps, |
|
guidance_scale=decoder_guidance_scale, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback_on_step_end=callback_on_step_end, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
**kwargs, |
|
) |
|
|
|
return outputs |
|
|