|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
class DDPMWuerstchenSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class DDPMWuerstchenScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and |
|
Langevin dynamics sampling. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2006.11239 |
|
|
|
Args: |
|
scaler (`float`): .... |
|
s (`float`): .... |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
scaler: float = 1.0, |
|
s: float = 0.008, |
|
): |
|
self.scaler = scaler |
|
self.s = torch.tensor([s]) |
|
self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2 |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
def _alpha_cumprod(self, t, device): |
|
if self.scaler > 1: |
|
t = 1 - (1 - t) ** self.scaler |
|
elif self.scaler < 1: |
|
t = t**self.scaler |
|
alpha_cumprod = torch.cos( |
|
(t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5 |
|
) ** 2 / self._init_alpha_cumprod.to(device) |
|
return alpha_cumprod.clamp(0.0001, 0.9999) |
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`torch.Tensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int = None, |
|
timesteps: Optional[List[int]] = None, |
|
device: Union[str, torch.device] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`Dict[float, int]`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. If passed, then |
|
`timesteps` must be `None`. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps are moved to. {2 / 3: 20, 0.0: 10} |
|
""" |
|
if timesteps is None: |
|
timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device) |
|
if not isinstance(timesteps, torch.Tensor): |
|
timesteps = torch.Tensor(timesteps).to(device) |
|
self.timesteps = timesteps |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: int, |
|
sample: torch.Tensor, |
|
generator=None, |
|
return_dict: bool = True, |
|
) -> Union[DDPMWuerstchenSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than DDPMWuerstchenSchedulerOutput class |
|
|
|
Returns: |
|
[`DDPMWuerstchenSchedulerOutput`] or `tuple`: [`DDPMWuerstchenSchedulerOutput`] if `return_dict` is True, |
|
otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
dtype = model_output.dtype |
|
device = model_output.device |
|
t = timestep |
|
|
|
prev_t = self.previous_timestep(t) |
|
|
|
alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]]) |
|
alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) |
|
alpha = alpha_cumprod / alpha_cumprod_prev |
|
|
|
mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt()) |
|
|
|
std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) |
|
std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise |
|
pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) |
|
|
|
if not return_dict: |
|
return (pred.to(dtype),) |
|
|
|
return DDPMWuerstchenSchedulerOutput(prev_sample=pred.to(dtype)) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.Tensor, |
|
) -> torch.Tensor: |
|
device = original_samples.device |
|
dtype = original_samples.dtype |
|
alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view( |
|
timesteps.size(0), *[1 for _ in original_samples.shape[1:]] |
|
) |
|
noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise |
|
return noisy_samples.to(dtype=dtype) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|
|
def previous_timestep(self, timestep): |
|
index = (self.timesteps - timestep[0]).abs().argmin().item() |
|
prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0]) |
|
return prev_t |
|
|