|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
class RePaintSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from |
|
the current timestep. `pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
pred_original_sample: torch.Tensor |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class RePaintScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`RePaintScheduler` is a scheduler for DDPM inpainting inside a given mask. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, `squaredcos_cap_v2`, or `sigmoid`. |
|
eta (`float`): |
|
The weight of noise for added noise in diffusion step. If its value is between 0.0 and 1.0 it corresponds |
|
to the DDIM scheduler, and if its value is between -0.0 and 1.0 it corresponds to the DDPM scheduler. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
clip_sample (`bool`, defaults to `True`): |
|
Clip the predicted sample between -1 and 1 for numerical stability. |
|
|
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
eta: float = 0.0, |
|
trained_betas: Optional[np.ndarray] = None, |
|
clip_sample: bool = True, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.from_numpy(trained_betas) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
elif beta_schedule == "sigmoid": |
|
|
|
betas = torch.linspace(-6, 6, num_train_timesteps) |
|
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
self.one = torch.tensor(1.0) |
|
|
|
self.final_alpha_cumprod = torch.tensor(1.0) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) |
|
|
|
self.eta = eta |
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int, |
|
jump_length: int = 10, |
|
jump_n_sample: int = 10, |
|
device: Union[str, torch.device] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, |
|
`timesteps` must be `None`. |
|
jump_length (`int`, defaults to 10): |
|
The number of steps taken forward in time before going backward in time for a single jump (“j” in |
|
RePaint paper). Take a look at Figure 9 and 10 in the paper. |
|
jump_n_sample (`int`, defaults to 10): |
|
The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9 |
|
and 10 in the paper. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
|
""" |
|
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) |
|
self.num_inference_steps = num_inference_steps |
|
|
|
timesteps = [] |
|
|
|
jumps = {} |
|
for j in range(0, num_inference_steps - jump_length, jump_length): |
|
jumps[j] = jump_n_sample - 1 |
|
|
|
t = num_inference_steps |
|
while t >= 1: |
|
t = t - 1 |
|
timesteps.append(t) |
|
|
|
if jumps.get(t, 0) > 0: |
|
jumps[t] = jumps[t] - 1 |
|
for _ in range(jump_length): |
|
t = t + 1 |
|
timesteps.append(t) |
|
|
|
timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
def _get_variance(self, t): |
|
prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
|
|
return variance |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: int, |
|
sample: torch.Tensor, |
|
original_image: torch.Tensor, |
|
mask: torch.Tensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[RePaintSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
original_image (`torch.Tensor`): |
|
The original image to inpaint on. |
|
mask (`torch.Tensor`): |
|
The mask where a value of 0.0 indicates which part of the original image to inpaint. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 |
|
|
|
|
|
if self.config.clip_sample: |
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = model_output.device |
|
noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) |
|
std_dev_t = self.eta * self._get_variance(timestep) ** 0.5 |
|
|
|
variance = 0 |
|
if t > 0 and self.eta > 0: |
|
variance = std_dev_t * noise |
|
|
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output |
|
|
|
|
|
prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance |
|
|
|
|
|
prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise |
|
|
|
|
|
pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part |
|
|
|
if not return_dict: |
|
return ( |
|
pred_prev_sample, |
|
pred_original_sample, |
|
) |
|
|
|
return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
def undo_step(self, sample, timestep, generator=None): |
|
n = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
for i in range(n): |
|
beta = self.betas[timestep + i] |
|
if sample.device.type == "mps": |
|
|
|
noise = randn_tensor(sample.shape, dtype=sample.dtype, generator=generator) |
|
noise = noise.to(sample.device) |
|
else: |
|
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) |
|
|
|
|
|
sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise |
|
|
|
return sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.") |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|