|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
|
|
class UnCLIPSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
pred_original_sample: Optional[torch.Tensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class UnCLIPScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
NOTE: do not use this scheduler. The DDPM scheduler has been updated to support the changes made here. This |
|
scheduler will be removed and replaced with DDPM. |
|
|
|
This is a modified DDPM Scheduler specifically for the karlo unCLIP model. |
|
|
|
This scheduler has some minor variations in how it calculates the learned range variance and dynamically |
|
re-calculates betas based off the timesteps it is skipping. |
|
|
|
The scheduler also uses a slightly different step ratio when computing timesteps to use for inference. |
|
|
|
See [`~DDPMScheduler`] for more information on DDPM scheduling |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
variance_type (`str`): |
|
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small_log` |
|
or `learned_range`. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample between `-clip_sample_range` and `clip_sample_range` for numerical |
|
stability. |
|
clip_sample_range (`float`, default `1.0`): |
|
The range to clip the sample between. See `clip_sample`. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process) |
|
or `sample` (directly predicting the noisy sample`) |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
variance_type: str = "fixed_small_log", |
|
clip_sample: bool = True, |
|
clip_sample_range: Optional[float] = 1.0, |
|
prediction_type: str = "epsilon", |
|
beta_schedule: str = "squaredcos_cap_v2", |
|
): |
|
if beta_schedule != "squaredcos_cap_v2": |
|
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'") |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
self.one = torch.tensor(1.0) |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) |
|
|
|
self.variance_type = variance_type |
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`torch.Tensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Note that this scheduler uses a slightly different step ratio than the other diffusers schedulers. The |
|
different step ratio is to mimic the original karlo implementation and does not affect the quality or accuracy |
|
of the results. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
step_ratio = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) |
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
|
|
def _get_variance(self, t, prev_timestep=None, predicted_variance=None, variance_type=None): |
|
if prev_timestep is None: |
|
prev_timestep = t - 1 |
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
if prev_timestep == t - 1: |
|
beta = self.betas[t] |
|
else: |
|
beta = 1 - alpha_prod_t / alpha_prod_t_prev |
|
|
|
|
|
|
|
|
|
variance = beta_prod_t_prev / beta_prod_t * beta |
|
|
|
if variance_type is None: |
|
variance_type = self.config.variance_type |
|
|
|
|
|
if variance_type == "fixed_small_log": |
|
variance = torch.log(torch.clamp(variance, min=1e-20)) |
|
variance = torch.exp(0.5 * variance) |
|
elif variance_type == "learned_range": |
|
|
|
min_log = variance.log() |
|
max_log = beta.log() |
|
|
|
frac = (predicted_variance + 1) / 2 |
|
variance = frac * max_log + (1 - frac) * min_log |
|
|
|
return variance |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: int, |
|
sample: torch.Tensor, |
|
prev_timestep: Optional[int] = None, |
|
generator=None, |
|
return_dict: bool = True, |
|
) -> Union[UnCLIPSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
prev_timestep (`int`, *optional*): The previous timestep to predict the previous sample at. |
|
Used to dynamically compute beta. If not given, `t-1` is used and the pre-computed beta is used. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than UnCLIPSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
|
|
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": |
|
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) |
|
else: |
|
predicted_variance = None |
|
|
|
|
|
if prev_timestep is None: |
|
prev_timestep = t - 1 |
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
if prev_timestep == t - 1: |
|
beta = self.betas[t] |
|
alpha = self.alphas[t] |
|
else: |
|
beta = 1 - alpha_prod_t / alpha_prod_t_prev |
|
alpha = 1 - beta |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" |
|
" for the UnCLIPScheduler." |
|
) |
|
|
|
|
|
if self.config.clip_sample: |
|
pred_original_sample = torch.clamp( |
|
pred_original_sample, -self.config.clip_sample_range, self.config.clip_sample_range |
|
) |
|
|
|
|
|
|
|
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * beta) / beta_prod_t |
|
current_sample_coeff = alpha ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
|
|
|
|
|
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample |
|
|
|
|
|
variance = 0 |
|
if t > 0: |
|
variance_noise = randn_tensor( |
|
model_output.shape, dtype=model_output.dtype, generator=generator, device=model_output.device |
|
) |
|
|
|
variance = self._get_variance( |
|
t, |
|
predicted_variance=predicted_variance, |
|
prev_timestep=prev_timestep, |
|
) |
|
|
|
if self.variance_type == "fixed_small_log": |
|
variance = variance |
|
elif self.variance_type == "learned_range": |
|
variance = (0.5 * variance).exp() |
|
else: |
|
raise ValueError( |
|
f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" |
|
" for the UnCLIPScheduler." |
|
) |
|
|
|
variance = variance * variance_noise |
|
|
|
pred_prev_sample = pred_prev_sample + variance |
|
|
|
if not return_dict: |
|
return (pred_prev_sample,) |
|
|
|
return UnCLIPSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) |
|
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|