|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
from enum import Enum |
|
from typing import Optional, Tuple, Union |
|
|
|
import flax |
|
import jax.numpy as jnp |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
|
|
from ..utils import BaseOutput, PushToHubMixin |
|
|
|
|
|
SCHEDULER_CONFIG_NAME = "scheduler_config.json" |
|
|
|
|
|
|
|
|
|
|
|
|
|
class FlaxKarrasDiffusionSchedulers(Enum): |
|
FlaxDDIMScheduler = 1 |
|
FlaxDDPMScheduler = 2 |
|
FlaxPNDMScheduler = 3 |
|
FlaxLMSDiscreteScheduler = 4 |
|
FlaxDPMSolverMultistepScheduler = 5 |
|
FlaxEulerDiscreteScheduler = 6 |
|
|
|
|
|
@dataclass |
|
class FlaxSchedulerOutput(BaseOutput): |
|
""" |
|
Base class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: jnp.ndarray |
|
|
|
|
|
class FlaxSchedulerMixin(PushToHubMixin): |
|
""" |
|
Mixin containing common functions for the schedulers. |
|
|
|
Class attributes: |
|
- **_compatibles** (`List[str]`) -- A list of classes that are compatible with the parent class, so that |
|
`from_config` can be used from a class different than the one used to save the config (should be overridden |
|
by parent class). |
|
""" |
|
|
|
config_name = SCHEDULER_CONFIG_NAME |
|
ignore_for_config = ["dtype"] |
|
_compatibles = [] |
|
has_compatibles = True |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, |
|
subfolder: Optional[str] = None, |
|
return_unused_kwargs=False, |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a Scheduler class from a pre-defined JSON-file. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an |
|
organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~SchedulerMixin.save_pretrained`], |
|
e.g., `./my_model_directory/`. |
|
subfolder (`str`, *optional*): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
Whether kwargs that are not consumed by the Python class should be returned or not. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `transformers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
|
|
<Tip> |
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models). |
|
|
|
</Tip> |
|
|
|
<Tip> |
|
|
|
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to |
|
use this method in a firewalled environment. |
|
|
|
</Tip> |
|
|
|
""" |
|
config, kwargs = cls.load_config( |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
subfolder=subfolder, |
|
return_unused_kwargs=True, |
|
**kwargs, |
|
) |
|
scheduler, unused_kwargs = cls.from_config(config, return_unused_kwargs=True, **kwargs) |
|
|
|
if hasattr(scheduler, "create_state") and getattr(scheduler, "has_state", False): |
|
state = scheduler.create_state() |
|
|
|
if return_unused_kwargs: |
|
return scheduler, state, unused_kwargs |
|
|
|
return scheduler, state |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a scheduler configuration object to the directory `save_directory`, so that it can be re-loaded using the |
|
[`~FlaxSchedulerMixin.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file will be saved (will be created if it does not exist). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) |
|
|
|
@property |
|
def compatibles(self): |
|
""" |
|
Returns all schedulers that are compatible with this scheduler |
|
|
|
Returns: |
|
`List[SchedulerMixin]`: List of compatible schedulers |
|
""" |
|
return self._get_compatibles() |
|
|
|
@classmethod |
|
def _get_compatibles(cls): |
|
compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) |
|
diffusers_library = importlib.import_module(__name__.split(".")[0]) |
|
compatible_classes = [ |
|
getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c) |
|
] |
|
return compatible_classes |
|
|
|
|
|
def broadcast_to_shape_from_left(x: jnp.ndarray, shape: Tuple[int]) -> jnp.ndarray: |
|
assert len(shape) >= x.ndim |
|
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(shape) - x.ndim)), shape) |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999, dtype=jnp.float32) -> jnp.ndarray: |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return jnp.array(betas, dtype=dtype) |
|
|
|
|
|
@flax.struct.dataclass |
|
class CommonSchedulerState: |
|
alphas: jnp.ndarray |
|
betas: jnp.ndarray |
|
alphas_cumprod: jnp.ndarray |
|
|
|
@classmethod |
|
def create(cls, scheduler): |
|
config = scheduler.config |
|
|
|
if config.trained_betas is not None: |
|
betas = jnp.asarray(config.trained_betas, dtype=scheduler.dtype) |
|
elif config.beta_schedule == "linear": |
|
betas = jnp.linspace(config.beta_start, config.beta_end, config.num_train_timesteps, dtype=scheduler.dtype) |
|
elif config.beta_schedule == "scaled_linear": |
|
|
|
betas = ( |
|
jnp.linspace( |
|
config.beta_start**0.5, config.beta_end**0.5, config.num_train_timesteps, dtype=scheduler.dtype |
|
) |
|
** 2 |
|
) |
|
elif config.beta_schedule == "squaredcos_cap_v2": |
|
|
|
betas = betas_for_alpha_bar(config.num_train_timesteps, dtype=scheduler.dtype) |
|
else: |
|
raise NotImplementedError( |
|
f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" |
|
) |
|
|
|
alphas = 1.0 - betas |
|
|
|
alphas_cumprod = jnp.cumprod(alphas, axis=0) |
|
|
|
return cls( |
|
alphas=alphas, |
|
betas=betas, |
|
alphas_cumprod=alphas_cumprod, |
|
) |
|
|
|
|
|
def get_sqrt_alpha_prod( |
|
state: CommonSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray |
|
): |
|
alphas_cumprod = state.alphas_cumprod |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape) |
|
|
|
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod |
|
|
|
|
|
def add_noise_common( |
|
state: CommonSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray |
|
): |
|
sqrt_alpha_prod, sqrt_one_minus_alpha_prod = get_sqrt_alpha_prod(state, original_samples, noise, timesteps) |
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
|
|
def get_velocity_common(state: CommonSchedulerState, sample: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray): |
|
sqrt_alpha_prod, sqrt_one_minus_alpha_prod = get_sqrt_alpha_prod(state, sample, noise, timesteps) |
|
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample |
|
return velocity |
|
|