svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
11.1 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PEFT utilities: Utilities related to peft library
"""
import collections
import importlib
from typing import Optional
from packaging import version
from .import_utils import is_peft_available, is_torch_available
if is_torch_available():
import torch
def recurse_remove_peft_layers(model):
r"""
Recursively replace all instances of `LoraLayer` with corresponding new layers in `model`.
"""
from peft.tuners.tuners_utils import BaseTunerLayer
has_base_layer_pattern = False
for module in model.modules():
if isinstance(module, BaseTunerLayer):
has_base_layer_pattern = hasattr(module, "base_layer")
break
if has_base_layer_pattern:
from peft.utils import _get_submodules
key_list = [key for key, _ in model.named_modules() if "lora" not in key]
for key in key_list:
try:
parent, target, target_name = _get_submodules(model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
setattr(parent, target_name, target.get_base_layer())
else:
# This is for backwards compatibility with PEFT <= 0.6.2.
# TODO can be removed once that PEFT version is no longer supported.
from peft.tuners.lora import LoraLayer
for name, module in model.named_children():
if len(list(module.children())) > 0:
## compound module, go inside it
recurse_remove_peft_layers(module)
module_replaced = False
if isinstance(module, LoraLayer) and isinstance(module, torch.nn.Linear):
new_module = torch.nn.Linear(
module.in_features,
module.out_features,
bias=module.bias is not None,
).to(module.weight.device)
new_module.weight = module.weight
if module.bias is not None:
new_module.bias = module.bias
module_replaced = True
elif isinstance(module, LoraLayer) and isinstance(module, torch.nn.Conv2d):
new_module = torch.nn.Conv2d(
module.in_channels,
module.out_channels,
module.kernel_size,
module.stride,
module.padding,
module.dilation,
module.groups,
).to(module.weight.device)
new_module.weight = module.weight
if module.bias is not None:
new_module.bias = module.bias
module_replaced = True
if module_replaced:
setattr(model, name, new_module)
del module
if torch.cuda.is_available():
torch.cuda.empty_cache()
return model
def scale_lora_layers(model, weight):
"""
Adjust the weightage given to the LoRA layers of the model.
Args:
model (`torch.nn.Module`):
The model to scale.
weight (`float`):
The weight to be given to the LoRA layers.
"""
from peft.tuners.tuners_utils import BaseTunerLayer
if weight == 1.0:
return
for module in model.modules():
if isinstance(module, BaseTunerLayer):
module.scale_layer(weight)
def unscale_lora_layers(model, weight: Optional[float] = None):
"""
Removes the previously passed weight given to the LoRA layers of the model.
Args:
model (`torch.nn.Module`):
The model to scale.
weight (`float`, *optional*):
The weight to be given to the LoRA layers. If no scale is passed the scale of the lora layer will be
re-initialized to the correct value. If 0.0 is passed, we will re-initialize the scale with the correct
value.
"""
from peft.tuners.tuners_utils import BaseTunerLayer
if weight == 1.0:
return
for module in model.modules():
if isinstance(module, BaseTunerLayer):
if weight is not None and weight != 0:
module.unscale_layer(weight)
elif weight is not None and weight == 0:
for adapter_name in module.active_adapters:
# if weight == 0 unscale should re-set the scale to the original value.
module.set_scale(adapter_name, 1.0)
def get_peft_kwargs(rank_dict, network_alpha_dict, peft_state_dict, is_unet=True):
rank_pattern = {}
alpha_pattern = {}
r = lora_alpha = list(rank_dict.values())[0]
if len(set(rank_dict.values())) > 1:
# get the rank occuring the most number of times
r = collections.Counter(rank_dict.values()).most_common()[0][0]
# for modules with rank different from the most occuring rank, add it to the `rank_pattern`
rank_pattern = dict(filter(lambda x: x[1] != r, rank_dict.items()))
rank_pattern = {k.split(".lora_B.")[0]: v for k, v in rank_pattern.items()}
if network_alpha_dict is not None and len(network_alpha_dict) > 0:
if len(set(network_alpha_dict.values())) > 1:
# get the alpha occuring the most number of times
lora_alpha = collections.Counter(network_alpha_dict.values()).most_common()[0][0]
# for modules with alpha different from the most occuring alpha, add it to the `alpha_pattern`
alpha_pattern = dict(filter(lambda x: x[1] != lora_alpha, network_alpha_dict.items()))
if is_unet:
alpha_pattern = {
".".join(k.split(".lora_A.")[0].split(".")).replace(".alpha", ""): v
for k, v in alpha_pattern.items()
}
else:
alpha_pattern = {".".join(k.split(".down.")[0].split(".")[:-1]): v for k, v in alpha_pattern.items()}
else:
lora_alpha = set(network_alpha_dict.values()).pop()
# layer names without the Diffusers specific
target_modules = list({name.split(".lora")[0] for name in peft_state_dict.keys()})
use_dora = any("lora_magnitude_vector" in k for k in peft_state_dict)
lora_config_kwargs = {
"r": r,
"lora_alpha": lora_alpha,
"rank_pattern": rank_pattern,
"alpha_pattern": alpha_pattern,
"target_modules": target_modules,
"use_dora": use_dora,
}
return lora_config_kwargs
def get_adapter_name(model):
from peft.tuners.tuners_utils import BaseTunerLayer
for module in model.modules():
if isinstance(module, BaseTunerLayer):
return f"default_{len(module.r)}"
return "default_0"
def set_adapter_layers(model, enabled=True):
from peft.tuners.tuners_utils import BaseTunerLayer
for module in model.modules():
if isinstance(module, BaseTunerLayer):
# The recent version of PEFT needs to call `enable_adapters` instead
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=enabled)
else:
module.disable_adapters = not enabled
def delete_adapter_layers(model, adapter_name):
from peft.tuners.tuners_utils import BaseTunerLayer
for module in model.modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "delete_adapter"):
module.delete_adapter(adapter_name)
else:
raise ValueError(
"The version of PEFT you are using is not compatible, please use a version that is greater than 0.6.1"
)
# For transformers integration - we need to pop the adapter from the config
if getattr(model, "_hf_peft_config_loaded", False) and hasattr(model, "peft_config"):
model.peft_config.pop(adapter_name, None)
# In case all adapters are deleted, we need to delete the config
# and make sure to set the flag to False
if len(model.peft_config) == 0:
del model.peft_config
model._hf_peft_config_loaded = None
def set_weights_and_activate_adapters(model, adapter_names, weights):
from peft.tuners.tuners_utils import BaseTunerLayer
def get_module_weight(weight_for_adapter, module_name):
if not isinstance(weight_for_adapter, dict):
# If weight_for_adapter is a single number, always return it.
return weight_for_adapter
for layer_name, weight_ in weight_for_adapter.items():
if layer_name in module_name:
return weight_
parts = module_name.split(".")
# e.g. key = "down_blocks.1.attentions.0"
key = f"{parts[0]}.{parts[1]}.attentions.{parts[3]}"
block_weight = weight_for_adapter.get(key, 1.0)
return block_weight
# iterate over each adapter, make it active and set the corresponding scaling weight
for adapter_name, weight in zip(adapter_names, weights):
for module_name, module in model.named_modules():
if isinstance(module, BaseTunerLayer):
# For backward compatbility with previous PEFT versions
if hasattr(module, "set_adapter"):
module.set_adapter(adapter_name)
else:
module.active_adapter = adapter_name
module.set_scale(adapter_name, get_module_weight(weight, module_name))
# set multiple active adapters
for module in model.modules():
if isinstance(module, BaseTunerLayer):
# For backward compatbility with previous PEFT versions
if hasattr(module, "set_adapter"):
module.set_adapter(adapter_names)
else:
module.active_adapter = adapter_names
def check_peft_version(min_version: str) -> None:
r"""
Checks if the version of PEFT is compatible.
Args:
version (`str`):
The version of PEFT to check against.
"""
if not is_peft_available():
raise ValueError("PEFT is not installed. Please install it with `pip install peft`")
is_peft_version_compatible = version.parse(importlib.metadata.version("peft")) > version.parse(min_version)
if not is_peft_version_compatible:
raise ValueError(
f"The version of PEFT you are using is not compatible, please use a version that is greater"
f" than {min_version}"
)