svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
6.44 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.clip.configuration_clip import CLIPTextConfig
from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel
from diffusers.utils.testing_utils import enable_full_determinism
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BlipDiffusionPipeline
params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
]
batch_params = [
"prompt",
"reference_image",
"source_subject_category",
"target_subject_category",
]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"neg_prompt",
"guidance_scale",
"prompt_strength",
"prompt_reps",
]
def get_dummy_components(self):
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
vocab_size=1000,
hidden_size=8,
intermediate_size=8,
projection_dim=8,
num_hidden_layers=1,
num_attention_heads=1,
max_position_embeddings=77,
)
text_encoder = ContextCLIPTextModel(text_encoder_config)
vae = AutoencoderKL(
in_channels=4,
out_channels=4,
down_block_types=("DownEncoderBlock2D",),
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(8,),
norm_num_groups=8,
layers_per_block=1,
act_fn="silu",
latent_channels=4,
sample_size=8,
)
blip_vision_config = {
"hidden_size": 8,
"intermediate_size": 8,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"image_size": 224,
"patch_size": 14,
"hidden_act": "quick_gelu",
}
blip_qformer_config = {
"vocab_size": 1000,
"hidden_size": 8,
"num_hidden_layers": 1,
"num_attention_heads": 1,
"intermediate_size": 8,
"max_position_embeddings": 512,
"cross_attention_frequency": 1,
"encoder_hidden_size": 8,
}
qformer_config = Blip2Config(
vision_config=blip_vision_config,
qformer_config=blip_qformer_config,
num_query_tokens=8,
tokenizer="hf-internal-testing/tiny-random-bert",
)
qformer = Blip2QFormerModel(qformer_config)
unet = UNet2DConditionModel(
block_out_channels=(8, 16),
norm_num_groups=8,
layers_per_block=1,
sample_size=16,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=8,
)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
scheduler = PNDMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
skip_prk_steps=True,
)
vae.eval()
qformer.eval()
text_encoder.eval()
image_processor = BlipImageProcessor()
components = {
"text_encoder": text_encoder,
"vae": vae,
"qformer": qformer,
"unet": unet,
"tokenizer": tokenizer,
"scheduler": scheduler,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
np.random.seed(seed)
reference_image = np.random.rand(32, 32, 3) * 255
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "swimming underwater",
"generator": generator,
"reference_image": reference_image,
"source_subject_category": "dog",
"target_subject_category": "dog",
"height": 32,
"width": 32,
"guidance_scale": 7.5,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def test_blipdiffusion(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
image = pipe(**self.get_dummy_inputs(device))[0]
image_slice = image[0, -3:, -3:, 0]
assert image.shape == (1, 16, 16, 4)
expected_slice = np.array(
[0.5329548, 0.8372512, 0.33269387, 0.82096875, 0.43657133, 0.3783, 0.5953028, 0.51934963, 0.42142007]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}"