|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AsymmetricAutoencoderKL, |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
ConsistencyDecoderVAE, |
|
ControlNetXSAdapter, |
|
EulerDiscreteScheduler, |
|
StableDiffusionXLControlNetXSPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, slow, torch_device |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ...models.autoencoders.test_models_vae import ( |
|
get_asym_autoencoder_kl_config, |
|
get_autoencoder_kl_config, |
|
get_autoencoder_tiny_config, |
|
get_consistency_vae_config, |
|
) |
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionXLControlNetXSPipelineFastTests( |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionXLControlNetXSPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
test_attention_slicing = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
sample_size=16, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
use_linear_projection=True, |
|
norm_num_groups=4, |
|
|
|
attention_head_dim=(2, 4), |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=56, |
|
cross_attention_dim=8, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetXSAdapter.from_unet( |
|
unet=unet, |
|
size_ratio=0.5, |
|
learn_time_embedding=True, |
|
conditioning_embedding_out_channels=(2, 2), |
|
) |
|
torch.manual_seed(0) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[4, 8], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=4, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=8, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
image = randn_tensor( |
|
(1, 3, 8 * controlnet_embedder_scale_factor, 8 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": image, |
|
} |
|
|
|
return inputs |
|
|
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
|
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
@require_torch_gpu |
|
|
|
def test_stable_diffusion_xl_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
pipe.unet.set_default_attn_processor() |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
|
|
def test_stable_diffusion_xl_multi_prompts(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = inputs["prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = "different prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = inputs["negative_prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = "different negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
def test_stable_diffusion_xl_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 2 * [inputs["prompt"]] |
|
inputs["num_images_per_prompt"] = 2 |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 2 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = sd_pipe.encode_prompt(prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1.1e-4 |
|
|
|
|
|
def test_save_load_optional_components(self): |
|
self._test_save_load_optional_components() |
|
|
|
|
|
def test_to_dtype(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] |
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) |
|
|
|
pipe.to(dtype=torch.float16) |
|
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] |
|
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) |
|
|
|
def test_multi_vae(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
block_out_channels = pipe.vae.config.block_out_channels |
|
norm_num_groups = pipe.vae.config.norm_num_groups |
|
|
|
vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny] |
|
configs = [ |
|
get_autoencoder_kl_config(block_out_channels, norm_num_groups), |
|
get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups), |
|
get_consistency_vae_config(block_out_channels, norm_num_groups), |
|
get_autoencoder_tiny_config(block_out_channels), |
|
] |
|
|
|
out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] |
|
|
|
for vae_cls, config in zip(vae_classes, configs): |
|
vae = vae_cls(**config) |
|
vae = vae.to(torch_device) |
|
components["vae"] = vae |
|
vae_pipe = self.pipeline_class(**components) |
|
|
|
|
|
|
|
vae_pipe.to(torch_device) |
|
vae_pipe.set_progress_bar_config(disable=None) |
|
|
|
out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0] |
|
|
|
assert out_vae_np.shape == out_np.shape |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionXLControlNetXSPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = ControlNetXSAdapter.from_pretrained( |
|
"UmerHA/Testing-ConrolNetXS-SDXL-canny", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_sequential_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (768, 512, 3) |
|
|
|
original_image = images[0, -3:, -3:, -1].flatten() |
|
expected_image = np.array([0.3202, 0.3151, 0.3328, 0.3172, 0.337, 0.3381, 0.3378, 0.3389, 0.3224]) |
|
assert np.allclose(original_image, expected_image, atol=1e-04) |
|
|
|
def test_depth(self): |
|
controlnet = ControlNetXSAdapter.from_pretrained( |
|
"UmerHA/Testing-ConrolNetXS-SDXL-depth", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionXLControlNetXSPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_sequential_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Stormtrooper's lecture" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (512, 512, 3) |
|
|
|
original_image = images[0, -3:, -3:, -1].flatten() |
|
expected_image = np.array([0.5448, 0.5437, 0.5426, 0.5543, 0.553, 0.5475, 0.5595, 0.5602, 0.5529]) |
|
assert np.allclose(original_image, expected_image, atol=1e-04) |
|
|