|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device |
|
|
|
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = DDIMPipeline |
|
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS |
|
required_optional_params = PipelineTesterMixin.required_optional_params - { |
|
"num_images_per_prompt", |
|
"latents", |
|
"callback", |
|
"callback_steps", |
|
} |
|
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=1, |
|
norm_num_groups=4, |
|
sample_size=8, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
scheduler = DDIMScheduler() |
|
components = {"unet": unet, "scheduler": scheduler} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"batch_size": 1, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
self.assertEqual(image.shape, (1, 8, 8, 3)) |
|
expected_slice = np.array([0.0, 9.979e-01, 0.0, 9.999e-01, 9.986e-01, 9.991e-01, 7.106e-04, 0.0, 0.0]) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) |
|
|
|
def test_save_load_local(self): |
|
super().test_save_load_local(expected_max_difference=3e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
super().test_save_load_optional_components(expected_max_difference=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class DDIMPipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_cifar10(self): |
|
model_id = "google/ddpm-cifar10-32" |
|
|
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = DDIMScheduler() |
|
|
|
ddim = DDIMPipeline(unet=unet, scheduler=scheduler) |
|
ddim.to(torch_device) |
|
ddim.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
image = ddim(generator=generator, eta=0.0, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_inference_ema_bedroom(self): |
|
model_id = "google/ddpm-ema-bedroom-256" |
|
|
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = DDIMScheduler.from_pretrained(model_id) |
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) |
|
ddpm.to(torch_device) |
|
ddpm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
image = ddpm(generator=generator, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|