svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
9.71 kB
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
# WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests.
class IFPipelineTesterMixin:
def _get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=1,
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=3,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _get_superresolution_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=[1, 2],
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=6,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
class_embed_type="timestep",
mid_block_scale_factor=1.414,
time_embedding_act_fn="gelu",
time_embedding_dim=32,
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
image_noising_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
# this test is modified from the base class because if pipelines set the text encoder
# as optional with the intention that the user is allowed to encode the prompt once
# and then pass the embeddings directly to the pipeline. The base class test uses
# the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded
# prompt to the pipeline when the text encoder is set to None, throwing an error.
# So we make the test reflect the intended usage of setting the text encoder to None.
def _test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
if "image" in inputs:
image = inputs["image"]
else:
image = None
if "mask_image" in inputs:
mask_image = inputs["mask_image"]
else:
mask_image = None
if "original_image" in inputs:
original_image = inputs["original_image"]
else:
original_image = None
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
# Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized.
# This should be handled in the base test and then this method can be removed.
def _test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)