|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, BertModel, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
HunyuanDiT2DModel, |
|
HunyuanDiTPipeline, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, to_np |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = HunyuanDiTPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
required_optional_params = PipelineTesterMixin.required_optional_params |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = HunyuanDiT2DModel( |
|
sample_size=16, |
|
num_layers=2, |
|
patch_size=2, |
|
attention_head_dim=8, |
|
num_attention_heads=3, |
|
in_channels=4, |
|
cross_attention_dim=32, |
|
cross_attention_dim_t5=32, |
|
pooled_projection_dim=16, |
|
hidden_size=24, |
|
activation_fn="gelu-approximate", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
scheduler = DDPMScheduler() |
|
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel") |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") |
|
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
components = { |
|
"transformer": transformer.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"use_resolution_binning": False, |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
self.assertEqual(image.shape, (1, 16, 16, 3)) |
|
expected_slice = np.array( |
|
[0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364] |
|
) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_sequential_cpu_offload_forward_pass(self): |
|
|
|
pass |
|
|
|
def test_sequential_offload_forward_pass_twice(self): |
|
|
|
pass |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical( |
|
expected_max_diff=1e-3, |
|
) |
|
|
|
def test_save_load_optional_components(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = inputs["prompt"] |
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0) |
|
|
|
( |
|
prompt_embeds_2, |
|
negative_prompt_embeds_2, |
|
prompt_attention_mask_2, |
|
negative_prompt_attention_mask_2, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
device=torch_device, |
|
dtype=torch.float32, |
|
text_encoder_index=1, |
|
) |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attention_mask, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": negative_prompt_attention_mask, |
|
"prompt_embeds_2": prompt_embeds_2, |
|
"prompt_attention_mask_2": prompt_attention_mask_2, |
|
"negative_prompt_embeds_2": negative_prompt_embeds_2, |
|
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attention_mask, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": negative_prompt_attention_mask, |
|
"prompt_embeds_2": prompt_embeds_2, |
|
"prompt_attention_mask_2": prompt_attention_mask_2, |
|
"negative_prompt_embeds_2": negative_prompt_embeds_2, |
|
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_feed_forward_chunking(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_no_chunking = image[0, -3:, -3:, -1] |
|
|
|
pipe.transformer.enable_forward_chunking(chunk_size=1, dim=0) |
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_chunking = image[0, -3:, -3:, -1] |
|
|
|
max_diff = np.abs(to_np(image_slice_no_chunking) - to_np(image_slice_chunking)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["return_dict"] = False |
|
image = pipe(**inputs)[0] |
|
original_image_slice = image[0, -3:, -3:, -1] |
|
|
|
pipe.transformer.fuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["return_dict"] = False |
|
image_fused = pipe(**inputs)[0] |
|
image_slice_fused = image_fused[0, -3:, -3:, -1] |
|
|
|
pipe.transformer.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["return_dict"] = False |
|
image_disabled = pipe(**inputs)[0] |
|
image_slice_disabled = image_disabled[0, -3:, -3:, -1] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase): |
|
prompt = "一个宇航员在骑马" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_hunyuan_dit_1024(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = HunyuanDiTPipeline.from_pretrained( |
|
"XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
prompt = self.prompt |
|
|
|
image = pipe( |
|
prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np" |
|
).images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125] |
|
) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) |
|
assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}" |
|
|