diffusers-sdxl-controlnet / tests /pipelines /ip_adapters /test_ip_adapter_stable_diffusion.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
29.2 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
)
from diffusers import (
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLPipeline,
)
from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
is_flaky,
load_pt,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
enable_full_determinism()
class IPAdapterNightlyTestsMixin(unittest.TestCase):
dtype = torch.float16
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_image_encoder(self, repo_id, subfolder):
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
repo_id, subfolder=subfolder, torch_dtype=self.dtype
).to(torch_device)
return image_encoder
def get_image_processor(self, repo_id):
image_processor = CLIPImageProcessor.from_pretrained(repo_id)
return image_processor
def get_dummy_inputs(
self, for_image_to_image=False, for_inpainting=False, for_sdxl=False, for_masks=False, for_instant_style=False
):
image = load_image(
"https://user-images.githubusercontent.com/24734142/266492875-2d50d223-8475-44f0-a7c6-08b51cb53572.png"
)
if for_sdxl:
image = image.resize((1024, 1024))
input_kwargs = {
"prompt": "best quality, high quality",
"negative_prompt": "monochrome, lowres, bad anatomy, worst quality, low quality",
"num_inference_steps": 5,
"generator": torch.Generator(device="cpu").manual_seed(33),
"ip_adapter_image": image,
"output_type": "np",
}
if for_image_to_image:
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/vermeer.jpg")
ip_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/river.png")
if for_sdxl:
image = image.resize((1024, 1024))
ip_image = ip_image.resize((1024, 1024))
input_kwargs.update({"image": image, "ip_adapter_image": ip_image})
elif for_inpainting:
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/inpaint_image.png")
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/mask.png")
ip_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/girl.png")
if for_sdxl:
image = image.resize((1024, 1024))
mask = mask.resize((1024, 1024))
ip_image = ip_image.resize((1024, 1024))
input_kwargs.update({"image": image, "mask_image": mask, "ip_adapter_image": ip_image})
elif for_masks:
face_image1 = load_image(
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl1.png"
)
face_image2 = load_image(
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl2.png"
)
mask1 = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask1.png")
mask2 = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask2.png")
input_kwargs.update(
{
"ip_adapter_image": [[face_image1], [face_image2]],
"cross_attention_kwargs": {"ip_adapter_masks": [mask1, mask2]},
}
)
elif for_instant_style:
composition_mask = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/1024_whole_mask.png"
)
female_mask = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter_None_20240321125641_mask.png"
)
male_mask = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter_None_20240321125344_mask.png"
)
background_mask = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter_6_20240321130722_mask.png"
)
ip_composition_image = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321125152.png"
)
ip_female_style = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321125625.png"
)
ip_male_style = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321125329.png"
)
ip_background = load_image(
"https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321130643.png"
)
input_kwargs.update(
{
"ip_adapter_image": [ip_composition_image, [ip_female_style, ip_male_style, ip_background]],
"cross_attention_kwargs": {
"ip_adapter_masks": [[composition_mask], [female_mask, male_mask, background_mask]]
},
}
)
return input_kwargs
@slow
@require_torch_gpu
class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin):
def test_text_to_image(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
inputs = self.get_dummy_inputs()
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array([0.80810547, 0.88183594, 0.9296875, 0.9189453, 0.9848633, 1.0, 0.97021484, 1.0, 1.0])
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
inputs = self.get_dummy_inputs()
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.30444336, 0.26513672, 0.22436523, 0.2758789, 0.25585938, 0.20751953, 0.25390625, 0.24633789, 0.21923828]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_image_to_image(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
inputs = self.get_dummy_inputs(for_image_to_image=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.22167969, 0.21875, 0.21728516, 0.22607422, 0.21948242, 0.23925781, 0.22387695, 0.25268555, 0.2722168]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
inputs = self.get_dummy_inputs(for_image_to_image=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.35913086, 0.265625, 0.26367188, 0.24658203, 0.19750977, 0.39990234, 0.15258789, 0.20336914, 0.5517578]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_inpainting(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
inputs = self.get_dummy_inputs(for_inpainting=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.27148438, 0.24047852, 0.22167969, 0.23217773, 0.21118164, 0.21142578, 0.21875, 0.20751953, 0.20019531]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
inputs = self.get_dummy_inputs(for_inpainting=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_text_to_image_model_cpu_offload(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.to(torch_device)
inputs = self.get_dummy_inputs()
output_without_offload = pipeline(**inputs).images
pipeline.enable_model_cpu_offload()
inputs = self.get_dummy_inputs()
output_with_offload = pipeline(**inputs).images
max_diff = np.abs(output_with_offload - output_without_offload).max()
self.assertLess(max_diff, 1e-3, "CPU offloading should not affect the inference results")
offloaded_modules = [
v
for k, v in pipeline.components.items()
if isinstance(v, torch.nn.Module) and k not in pipeline._exclude_from_cpu_offload
]
(
self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)),
f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}",
)
def test_text_to_image_full_face(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin")
pipeline.set_ip_adapter_scale(0.7)
inputs = self.get_dummy_inputs()
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array([0.1704, 0.1296, 0.1272, 0.2212, 0.1514, 0.1479, 0.4172, 0.4263, 0.4360])
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_unload(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
before_processors = [attn_proc.__class__ for attn_proc in pipeline.unet.attn_processors.values()]
pipeline.to(torch_device)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.set_ip_adapter_scale(0.7)
pipeline.unload_ip_adapter()
assert getattr(pipeline, "image_encoder") is None
assert getattr(pipeline, "feature_extractor") is not None
after_processors = [attn_proc.__class__ for attn_proc in pipeline.unet.attn_processors.values()]
assert before_processors == after_processors
@is_flaky
def test_multi(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype
)
pipeline.to(torch_device)
pipeline.load_ip_adapter(
"h94/IP-Adapter", subfolder="models", weight_name=["ip-adapter_sd15.bin", "ip-adapter-plus_sd15.bin"]
)
pipeline.set_ip_adapter_scale([0.7, 0.3])
inputs = self.get_dummy_inputs()
ip_adapter_image = inputs["ip_adapter_image"]
inputs["ip_adapter_image"] = [ip_adapter_image, [ip_adapter_image] * 2]
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array([0.5234, 0.5352, 0.5625, 0.5713, 0.5947, 0.6206, 0.5786, 0.6187, 0.6494])
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_text_to_image_face_id(self):
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=self.dtype
)
pipeline.to(torch_device)
pipeline.load_ip_adapter(
"h94/IP-Adapter-FaceID",
subfolder=None,
weight_name="ip-adapter-faceid_sd15.bin",
image_encoder_folder=None,
)
pipeline.set_ip_adapter_scale(0.7)
inputs = self.get_dummy_inputs()
id_embeds = load_pt("https://huggingface.co/datasets/fabiorigano/testing-images/resolve/main/ai_face2.ipadpt")[
0
]
id_embeds = id_embeds.reshape((2, 1, 1, 512))
inputs["ip_adapter_image_embeds"] = [id_embeds]
inputs["ip_adapter_image"] = None
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.32714844, 0.3239746, 0.3466797, 0.31835938, 0.30004883, 0.3251953, 0.3215332, 0.3552246, 0.3251953]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
@slow
@require_torch_gpu
class IPAdapterSDXLIntegrationTests(IPAdapterNightlyTestsMixin):
def test_text_to_image_sdxl(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="sdxl_models/image_encoder")
feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
feature_extractor=feature_extractor,
torch_dtype=self.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
inputs = self.get_dummy_inputs()
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[
0.09630299,
0.09551358,
0.08480701,
0.09070173,
0.09437338,
0.09264627,
0.08883232,
0.09287417,
0.09197289,
]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
feature_extractor=feature_extractor,
torch_dtype=self.dtype,
)
pipeline.to(torch_device)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter-plus_sdxl_vit-h.bin",
)
inputs = self.get_dummy_inputs()
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.0576596, 0.05600825, 0.04479006, 0.05288461, 0.05461192, 0.05137569, 0.04867965, 0.05301541, 0.04939842]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_image_to_image_sdxl(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="sdxl_models/image_encoder")
feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
feature_extractor=feature_extractor,
torch_dtype=self.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
inputs = self.get_dummy_inputs(for_image_to_image=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[
0.06513795,
0.07009393,
0.07234055,
0.07426041,
0.07002589,
0.06415862,
0.07827643,
0.07962808,
0.07411247,
]
)
assert np.allclose(image_slice, expected_slice, atol=1e-3)
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
feature_extractor=feature_extractor,
torch_dtype=self.dtype,
)
pipeline.to(torch_device)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter-plus_sdxl_vit-h.bin",
)
inputs = self.get_dummy_inputs(for_image_to_image=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[
0.07126552,
0.07025367,
0.07348302,
0.07580167,
0.07467338,
0.06918576,
0.07480252,
0.08279955,
0.08547315,
]
)
assert np.allclose(image_slice, expected_slice, atol=1e-3)
def test_inpainting_sdxl(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="sdxl_models/image_encoder")
feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
feature_extractor=feature_extractor,
torch_dtype=self.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
inputs = self.get_dummy_inputs(for_inpainting=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
image_slice.tolist()
expected_slice = np.array(
[0.14181179, 0.1493012, 0.14283323, 0.14602411, 0.14915377, 0.15015268, 0.14725655, 0.15009224, 0.15164584]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
pipeline = StableDiffusionXLInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
feature_extractor=feature_extractor,
torch_dtype=self.dtype,
)
pipeline.to(torch_device)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter-plus_sdxl_vit-h.bin",
)
inputs = self.get_dummy_inputs(for_inpainting=True)
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
image_slice.tolist()
expected_slice = np.array([0.1398, 0.1476, 0.1407, 0.1442, 0.1470, 0.1480, 0.1449, 0.1481, 0.1494])
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_ip_adapter_single_mask(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
torch_dtype=self.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter(
"h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors"
)
pipeline.set_ip_adapter_scale(0.7)
inputs = self.get_dummy_inputs(for_masks=True)
mask = inputs["cross_attention_kwargs"]["ip_adapter_masks"][0]
processor = IPAdapterMaskProcessor()
mask = processor.preprocess(mask)
inputs["cross_attention_kwargs"]["ip_adapter_masks"] = mask
inputs["ip_adapter_image"] = inputs["ip_adapter_image"][0]
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.7307304, 0.73450166, 0.73731124, 0.7377061, 0.7318013, 0.73720926, 0.74746597, 0.7409929, 0.74074936]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_ip_adapter_multiple_masks(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
torch_dtype=self.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter(
"h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"] * 2
)
pipeline.set_ip_adapter_scale([0.7] * 2)
inputs = self.get_dummy_inputs(for_masks=True)
masks = inputs["cross_attention_kwargs"]["ip_adapter_masks"]
processor = IPAdapterMaskProcessor()
masks = processor.preprocess(masks)
inputs["cross_attention_kwargs"]["ip_adapter_masks"] = masks
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.79474676, 0.7977683, 0.8013954, 0.7988008, 0.7970615, 0.8029355, 0.80614823, 0.8050743, 0.80627424]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_instant_style_multiple_masks(self):
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16
)
pipeline = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9", torch_dtype=torch.float16, image_encoder=image_encoder, variant="fp16"
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter(
["ostris/ip-composition-adapter", "h94/IP-Adapter"],
subfolder=["", "sdxl_models"],
weight_name=[
"ip_plus_composition_sdxl.safetensors",
"ip-adapter_sdxl_vit-h.safetensors",
],
image_encoder_folder=None,
)
scale_1 = {
"down": [[0.0, 0.0, 1.0]],
"mid": [[0.0, 0.0, 1.0]],
"up": {"block_0": [[0.0, 0.0, 1.0], [1.0, 1.0, 1.0], [0.0, 0.0, 1.0]], "block_1": [[0.0, 0.0, 1.0]]},
}
pipeline.set_ip_adapter_scale([1.0, scale_1])
inputs = self.get_dummy_inputs(for_instant_style=True)
processor = IPAdapterMaskProcessor()
masks1 = inputs["cross_attention_kwargs"]["ip_adapter_masks"][0]
masks2 = inputs["cross_attention_kwargs"]["ip_adapter_masks"][1]
masks1 = processor.preprocess(masks1, height=1024, width=1024)
masks2 = processor.preprocess(masks2, height=1024, width=1024)
masks2 = masks2.reshape(1, masks2.shape[0], masks2.shape[2], masks2.shape[3])
inputs["cross_attention_kwargs"]["ip_adapter_masks"] = [masks1, masks2]
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.23551631, 0.20476806, 0.14099443, 0.0, 0.07675594, 0.05672678, 0.0, 0.0, 0.02099729]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4
def test_ip_adapter_multiple_masks_one_adapter(self):
image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder")
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
torch_dtype=self.dtype,
)
pipeline.enable_model_cpu_offload()
pipeline.load_ip_adapter(
"h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([[0.7, 0.7]])
inputs = self.get_dummy_inputs(for_masks=True)
masks = inputs["cross_attention_kwargs"]["ip_adapter_masks"]
processor = IPAdapterMaskProcessor()
masks = processor.preprocess(masks)
masks = masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])
inputs["cross_attention_kwargs"]["ip_adapter_masks"] = [masks]
ip_images = inputs["ip_adapter_image"]
inputs["ip_adapter_image"] = [[image[0] for image in ip_images]]
images = pipeline(**inputs).images
image_slice = images[0, :3, :3, -1].flatten()
expected_slice = np.array(
[0.79474676, 0.7977683, 0.8013954, 0.7988008, 0.7970615, 0.8029355, 0.80614823, 0.8050743, 0.80627424]
)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 5e-4