|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
from diffusers import ( |
|
DDIMScheduler, |
|
KandinskyV22ControlnetImg2ImgPipeline, |
|
KandinskyV22PriorEmb2EmbPipeline, |
|
UNet2DConditionModel, |
|
VQModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
) |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class KandinskyV22ControlnetImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = KandinskyV22ControlnetImg2ImgPipeline |
|
params = ["image_embeds", "negative_image_embeds", "image", "hint"] |
|
batch_params = ["image_embeds", "negative_image_embeds", "image", "hint"] |
|
required_optional_params = [ |
|
"generator", |
|
"height", |
|
"width", |
|
"strength", |
|
"guidance_scale", |
|
"num_inference_steps", |
|
"return_dict", |
|
"guidance_scale", |
|
"num_images_per_prompt", |
|
"output_type", |
|
"return_dict", |
|
] |
|
test_xformers_attention = False |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def time_input_dim(self): |
|
return 32 |
|
|
|
@property |
|
def block_out_channels_0(self): |
|
return self.time_input_dim |
|
|
|
@property |
|
def time_embed_dim(self): |
|
return self.time_input_dim * 4 |
|
|
|
@property |
|
def cross_attention_dim(self): |
|
return 100 |
|
|
|
@property |
|
def dummy_unet(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"in_channels": 8, |
|
|
|
"out_channels": 8, |
|
"addition_embed_type": "image_hint", |
|
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), |
|
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), |
|
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", |
|
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), |
|
"layers_per_block": 1, |
|
"encoder_hid_dim": self.text_embedder_hidden_size, |
|
"encoder_hid_dim_type": "image_proj", |
|
"cross_attention_dim": self.cross_attention_dim, |
|
"attention_head_dim": 4, |
|
"resnet_time_scale_shift": "scale_shift", |
|
"class_embed_type": None, |
|
} |
|
|
|
model = UNet2DConditionModel(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_movq_kwargs(self): |
|
return { |
|
"block_out_channels": [32, 32, 64, 64], |
|
"down_block_types": [ |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"AttnDownEncoderBlock2D", |
|
], |
|
"in_channels": 3, |
|
"latent_channels": 4, |
|
"layers_per_block": 1, |
|
"norm_num_groups": 8, |
|
"norm_type": "spatial", |
|
"num_vq_embeddings": 12, |
|
"out_channels": 3, |
|
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"vq_embed_dim": 4, |
|
} |
|
|
|
@property |
|
def dummy_movq(self): |
|
torch.manual_seed(0) |
|
model = VQModel(**self.dummy_movq_kwargs) |
|
return model |
|
|
|
def get_dummy_components(self): |
|
unet = self.dummy_unet |
|
movq = self.dummy_movq |
|
|
|
ddim_config = { |
|
"num_train_timesteps": 1000, |
|
"beta_schedule": "linear", |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"clip_sample": False, |
|
"set_alpha_to_one": False, |
|
"steps_offset": 0, |
|
"prediction_type": "epsilon", |
|
"thresholding": False, |
|
} |
|
|
|
scheduler = DDIMScheduler(**ddim_config) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"movq": movq, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) |
|
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( |
|
device |
|
) |
|
|
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) |
|
|
|
hint = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"image": init_image, |
|
"image_embeds": image_embeds, |
|
"negative_image_embeds": negative_image_embeds, |
|
"hint": hint, |
|
"generator": generator, |
|
"height": 64, |
|
"width": 64, |
|
"num_inference_steps": 10, |
|
"guidance_scale": 7.0, |
|
"strength": 0.2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_kandinsky_controlnet_img2img(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe( |
|
**self.get_dummy_inputs(device), |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] |
|
) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" |
|
assert ( |
|
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=1.75e-3) |
|
|
|
def test_float16_inference(self): |
|
super().test_float16_inference(expected_max_diff=2e-1) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class KandinskyV22ControlnetImg2ImgPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_kandinsky_controlnet_img2img(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" |
|
) |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" |
|
) |
|
init_image = init_image.resize((512, 512)) |
|
|
|
hint = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/kandinskyv22/hint_image_cat.png" |
|
) |
|
hint = torch.from_numpy(np.array(hint)).float() / 255.0 |
|
hint = hint.permute(2, 0, 1).unsqueeze(0) |
|
|
|
prompt = "A robot, 4k photo" |
|
|
|
pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 |
|
) |
|
pipe_prior.enable_model_cpu_offload() |
|
|
|
pipeline = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
|
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
image_emb, zero_image_emb = pipe_prior( |
|
prompt, |
|
image=init_image, |
|
strength=0.85, |
|
generator=generator, |
|
negative_prompt="", |
|
num_inference_steps=5, |
|
).to_tuple() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipeline( |
|
image=init_image, |
|
image_embeds=image_emb, |
|
negative_image_embeds=zero_image_emb, |
|
hint=hint, |
|
generator=generator, |
|
num_inference_steps=5, |
|
height=512, |
|
width=512, |
|
strength=0.5, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten()) |
|
assert max_diff < 1e-4 |
|
|